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Résumé. Une procédure adaptative de prédiction de courbe pour une série tem-
porelle fonctionnelle stationnaire est proposée. Les trajectoires des séries temporelles
fonctionnelles sont supposées être irrégulières et sont observées avec erreur à des instants
discrets. Notre prédicteur linéaire est basé sur le meilleur prédicteur linéaire sans biais
(BLUP) et sur les estimateurs non paramétriques adaptatifs des fonctions de moyenne et
d’autocovariance du processus. En d’autres termes, les fénêtres de lissage de ces estima-
teurs sont choisis de manière adaptative en fonction de la régularité locale des trajectoires.
L’avantage d’une telle procédure sera une réduction du risque de prédiction par rapport
aux procédures existantes.

Mots-clés. BLUP, Estimateur adaptatif, Function moyenne, Function d’autocova-
riance, Lissage à noyau.

Abstract. An adaptive procedure for curve prediction for a stationary functional
time series is proposed. The sample paths of the functional times series are assumed
to be irregular and are observed with error at discrete times in the domain. Our linear
predictor is based on the best linear unbiased predictor (BLUP) and on the adaptive
nonparametric mean and autocovariance functions estimators. That is, the bandwidth
parameters of these estimators are chosen adaptively with respect to the local regularity
of the sample paths. The benefit of such a procedure will be a reduction in risk prediction
compared to existing procedures.

Keywords. BLUP, Adaptive estimator, Mean function, Autocovariance function,
Kernel smoothing.

1 Introduction

In many applications, the observations corresponding to a curve are not all available
at once. Consider, for example, electricity consumption curves in a household. The
curve of the daily consumption is one element of the FTS. Predicting the curve could
mean predicting the daily curve using the observations from the previous days. It could
also mean predicting the future values on a daily curve using the observations from the
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previous days and the intra-day observations already available. However, the observations
are in general noisy measurements of the curves, at discrete points in their domain, not
necessarily regular or not necessarily the same from one curve to another. Our aim is
to propose a simple and fast data-driven procedure for curve prediction for functional
time series (FTS). The natural paradigm in stationary FTS is to consider the curves as
sample paths of a stochastic process X, and to assume some kind of stochastic dependence
between the curves.

In the literature, the most commonly studied case is where the curves are fully ob-
served, see for example Jiao et al. (2023) and references therein. In the context of dis-
cretely observed FTS, a functional data recovery procedure have been already proposed by
Rub́ın and Panaretos (2020) under the assumption that these functions admit at least one
derivative. This procedure require estimators of the mean function and autocovariance
function. However, in some cases, for example in the energy domain, the mean and auto-
covariance functions can be very irregular, of unknown irregularity. Several phenomena
are naturally described by this type of data. This is the case for photovoltaic electricity
production, which depends on the clouds. Thus, if the production of a photovoltaic park
is observed for a sufficiently long period of time, it naturally generates data under the
form of a set of irregular daily curves that are dependent on each other.

For irregular and weakly dependent curves, Maissoro et al. (2024) proposed new es-
timators of the mean and autocovariance functions that adapt to the local regularity of
the underlying process X that generates the FTS {Xn}. Indeed the quality of the infer-
ence depends on the regularity of the underlying process that generated the trajectories.
Here, a challenge is to take into account the local regularity parameters in order to adapt
the curve prediction procedure in the context of FTS. We consider an adaptive predictor
which combines the best linear unbiased predictor (BLUP) estimator and the adaptive
optimal estimates of the irregular mean function and the autocovariances of the process
to predict the unobserved part of the future curve.

In the following sections, we first formally present the FTS model and the data gen-
eration model we consider. Second, we introduce the adaptive linear predictor. Third,
we explain how the linear predictor is estimated adaptively to the local regularity of the
underlying process X that generates the FTS {Xn}.

2 The functional time series model

We consider a second-order functional time series (FTS) process {Xn} = {Xn(u), u ∈
I, n ∈ Z} ⊂ H, stochastically dependent with respect to the index n. Typically, I is a
bounded domain on the real line on which the random functions are defined, and without
loss of generality we consider I = (0, 1]. The space H = L2(I) is the Hilbert space of
real-valued square integrable functions defined on I. Moreover, almost surely, the paths
Xn are assumed to belong to the Banach space C = C(I) of continuous functions, equipped
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with the sup-norm ∥ · ∥∞. The mean and the lag-ℓ, ℓ ≥ 0, (auto)covariance functions of
{Xn} are respectively

µ(t) = E(X(t)) and Γℓ(s, t) = E {[X0(s)− µ(s)][Xℓ(t)− µ(t)]} , ∀s, t ∈ I.

Observation scheme. The data are obtained from sample paths realizations Xn, n =
1, 2 . . . , of a stationary time series X which are observed with error at discrete times.
The data associated to the sample path Xn consists of the pairs (Yn,i, Tn,i) ∈ R × I,
representing the responses and the associated design point, which are assumed to be
generated according to

Yn,i = Xn(Tn,i) + εn,i, 1 ≤ n ≤ N, 1 ≤ i ≤ Mn. (1)

Here, Mn is an integer which can be non random and common to several Xn, or randomly
drawn from some distribution, independently of X. The Tn,i are the design points for Xn,
which can be non-random or randomly drawn from some distribution, independent of X
and M . The case where Tn,i are the same for several Xn, and implicitly Mn is fixed, is
the so-called common design case. The case where the Tn,i are random is referred to as
the independent design case. The εn,i are the measurement errors and

εn,i = σ(Tn,i)en,i, 1 ≤ i ≤ Mn,

where en,i are independent copies of a centred variable e with unit variance, and σ(t) is
an unknown bounded function that accounts for possible heteroscedastic measurement
errors. The issues discussed here apply to both independent and joint design cases, unless
otherwise stated.

3 Adaptive linear predictor

Let t0 ∈ I and n0 ∈ {1, . . . , N} be fixed. Let Tn be the ordered set of design points Tn,i

where the curve Xn is measured with error as described in the model (1). Let

Yn = (Yn,1, . . . , Yn,Mn)
⊤ , Σn = diag

(
σ2(Tn,1), . . . , σ

2(Tn,Mn)
)
,

be the Mn×1 column matrix of the noisy measurements of Xn and the Mn×Mn diagonal
covariance matrix of the noises εn,1, . . . , εn,Mn , respectively. We aim to define the BLUP
using the L lags from n0, for L < n0. Let us introduce the following notations,

Mn0,L = Mn0−L + . . .+Mn0−1 +Mn0 , Yn0,L = (Y⊤
n0−L, . . . ,Y⊤

n0
)⊤, and

Mn0,L = (µ(Tn0−L,1), . . . , µ(Tn0−L,Mn0−L
), . . . , µ(Tn0,1), . . . , µ(Tn0,Mn0

))⊤.

Finally, the subscript M,T indicates a conditional operator (variance, covariance, mean)
given Mn and Tn, n ≥ 1.
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Following Robinson (1991), an estimator X̂n0(t0) of Xn0(t0) given Yn0,L is BLUP if the

following conditions hold true: X̂n0(t0) is a linear function of Yn0,L ; X̂n0(t0) is unbiased,

i.e. EM,T (X̂n0(t0)) = µ(t0) ; and X̂n0(t0) has minimum mean square error among the class
of linear unbiased estimators. The form of this linear predictor is

X̂n0(t0) = µ̂(t0) + B̂⊤
n0,L

(Yn0,L − M̂n0,L),

where
Bn0,L = VarM,T (Yn0,L)

−1EM,T ([Yn0,L −Mn0,L][Xn0(t0)− µ(t0)]) ,

where VarM,T (Yn0,L) = Gn0,L + Σn0,L, and,

Σn0,L = diag
(
σ2(Tn0−L,1), . . . , σ

2(Tn0−L,Mn0−L
), . . . , σ2(Tn0,1), . . . , σ

2(Tn0,Mn0
)
)

Gn0,L =


G

(n0−L,n0−L)
0 G

(n0−L,n0−L+1)
1 · · · G

(n0−L,n0)
L

G
(n0−L+1,n0−L)
1 G

(n0−L+1,n0−L+1)
0 · · · G

(n0−L+1,n0)
L−1

...
...

. . .
...

G
(n0,n0−L)
L G

(n0,n0−L+1)
L−1 · · · G

(n0,n0)
0


G

(n,n′)
ℓ = (Γℓ(Tn,i, Tn′,j))1≤i≤Mn,1≤j≤Mn′

.

Let us point out that X̂n0(t0) becomes the PACE predictor when L = 0, see Yao et al.
(2005). To further elaborate, for simplicity we hereafter study the best linear predictor
using only the observations for the current curve and the L = 1 lagged curve. The case
L > 1 can be handled similarly at the cost of more complex matrix algebra. When L = 1,
we have

VarM,T (Yn0,1) =

(
G

(n0−1,n0−1))
0 + Σn0−1 G

(n0−1,n0))
1

G
(n0,n0−1))
1 G

(n0,n0))
0 + Σn0

)
∈ RMn0+Mn0−1×RMn0+Mn0−1 ,

and

CovM,T (Yn0,1, Xn0(t0)) =



Γ1(Tn0−1,1, t0)
...

Γ1(Tn0−1,Mn0−1 , t0)
Γ0(Tn0,1, t0)

...
Γ0(Tn0,Mn0

, t0)


∈ RMn0+Mn0−1 .

We propose adaptive estimators for the vector CovM,T (Yn0,1, Xn0(t0)) and the matrix

VarM,T (Yn0,1). It is worth noting that the nonparametric estimator of G
(n,n)
0 + Σn can

be easily constructed by the ‘first smooth, then estimate’ approach, and it does not
require a diagonal correction due to the noise variance, as would have been the case for
the estimation of Γ0. More precisely, outside the diagonal we estimate E[X(s)X(t)] by
the average of the products of the nonparametric estimates of X(s) and X(t). For the
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diagonal values of the matrix G
(n,n)
0 + Σn we simply smooth the squares of the centered

Yn,i, 1 ≤ i ≤ Mn.

The adaptive estimation of the linear predictor involves the estimation of the matrix
VarM,T (Yn0,1) and the vector CovM,T (Yn0,1, Xn0(t0)) adaptive to the regularity of the
stationary process X that generates the FTS {Xn}. This is equivalent to estimating the
mean function µ, the covariance function Γ0 and the lag-1 autocovariance function Γ1,
which adapt to the local regularity of X. We assume that the sample paths Xn are not
differentiable almost surely. Functional data from fields such as energy, environment,
chemistry and physics, medical devices, meteorology, are often very irregular and thus
considering non-differentiable curves Xn seems realistic.

4 Estimation of the adaptive linear predictor

We use the procedure of adaptive mean and autocovariance function estimation proposed
by Maissoro et al. (2024) under the assumption that X admits a local regularity and that
the FTS {Xn} satisfy a weak dependency assumption. We first give an insight into the
local regularity and weak dependence assumptions before proving the definition of these
estimators.

Local regularity parameters. The assumption that X admits a local regularity in the
neighbourhood of t ∈ I allows estimates based on {Xn}, which adapt to the regularity
of the underlying process X. The local regularity for stationary FTS was considered by
Maissoro et al. (2024) and was proposed and studied by Golovkine et al. (2022) in the
context of independent samples of random curves. The process X admits a local regularity
at t ∈ I with a local exponent Ht ∈ (0, 1) and a local Hölder constant L2

t if a constant
β > 0 exists and for any t ∈ I such that

E
[
{X(u)−X(v)}2

]
= L2

t |u− v|2Ht{1 +O(|u− v|β)}, (2)

when u ≤ t ≤ v lie in a small neighborhood of t. The procedure for estimating the local
regularity parameters Ht and L2

t as well as examples of processes satisfying (2), including
but not limited to the Functional AutoRegressive process of order one where the white
noise belongs to the class of multifractional Brownian motion, can be found in Maissoro
et al. (2024).

Weak dependence. We use the concept of Lp
C − m−approximability considered by

Maissoro et al. (2024) for random processes valued in (C, ∥ · ∥∞). It is a redefinition of
the concept of Lp

H − m−approximability introduced by Hörmann and Kokoszka (2010)
in the context of random processes valued in C instead of H. As a result, the weak
dependence between the curves Xn is transferred to the sequences {Xn(t)} for all t ∈ I.
Consequently, this general notion of weak dependence allows the localised study of FTS,
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which is necessary for inference on local regularity parameters as well as on the mean
and autocovariance function estimators. The underlying idea of this weak dependence
is to approximate {Xn} with an m-dependent sequence {X(m)

n ,m ≥ 1} such that, for

any n ∈ Z, the sequence {X(m)
n ,m ≥ 1} converges to Xn in some manner as m →

∞. Therefore, the behavior of the original process can be determined by observing the
behavior of its coupled m-dependent sequences, provided they are sufficiently close to the
original process. A formal definition and examples of common FTS models that satisfy
Lp

C − m−approximability, including but not limited to a revised FAR(1) process, the
Functional Linear Process, the Product Model, and the Functional ARCH, can be found
in Maissoro et al. (2024).

Adaptive mean and (auto)covariance estimation. Let us consider a stationary

FTS {Xn} ⊂ Lp
C, for some p ≥ 4, defined on I = (0, 1]. Let X̂1(t;h), X̂2(t;h), . . . , X̂N(t;h)

be the Nadaraya-Watson (NW) estimators of X1(t), X2(t), . . . , XN(t) obtained using a
bandwidth parameter h considered in some set of bandwidths HN . Maissoro et al. (2024)
follow the ‘smooth first, then estimate’ approach and define the estimator of the mean
and the autocovariance function Γℓ(s, t) with s ̸= t using empirical estimators where the
original trajectories are replaced with the NW ones. For the mean function, at each t ∈ I
an optimal bandwidth parameter h∗

µ is estimated by minimising an estimated version of a
risk function Rµ(t;h) over the grid HN and used to estimate µ(t). The risk function is a
sharp upper bound on the quadratic risk of the µ̂N(t;h) estimator of the mean function,
which is defined below. For any t ∈ I, let

πn(t;h) = 1 if
Mn∑
i=1

1{|Tn,i − t| ≤ h} ≥ 1, and πn(t;h) = 0 otherwise,

where 1{·} denote the indicator function. The adaptive mean function estimator is
µ̂∗
N(t) = µ̂N(t;h

∗
µ) where

µ̂N(t;h) =
1

PN(t;h)

N∑
n=1

πn(t;h)X̂n(t;h) with PN(t;h) =
N∑

n=1

πn(t;h), t ∈ I.

The bandwidth h∗
µ is chosen to minimize an estimated version of Rµ(t;h), namely

h∗
µ ∈ argmin

h∈HN

R̂µ(t;h) with R̂µ(t;h) = Rµ(t;h, Ĥt, L̂
2
t , σ̂

2(t)), where
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Rµ(t;h,Ht, L
2
t , σ

2(t)) = L2
th

2HtB(t;h, 2Ht) + σ2(t)Vµ(t;h) + Dµ(t;h)/PN(t;h), with

Vµ(t;h) =
N∑

n=1

πn(t;h)

P 2
N(t;h)

cn(t;h) max
1≤i≤Mn

|Wn,i(t;h)| , with cn(t;h) =
Mn∑
i=1

|Wn,i(t;h)| ,

B(t;h, α) =
N∑

n=1

πn(t;h)

PN(t;h)
cn(t;h)bn(t;h, α), with bn(t;h, α)=

Mn∑
i=1

∣∣∣∣Tn,i−t

h

∣∣∣∣α|Wn,i(t;h)| ,

Dµ(t;h) = E
[
{X0(t)− µ(t)}2

]
+ 2

N−1∑
ℓ=1

pℓ(t;h)E ({X0(t)− µ(t)}{Xℓ(t)− µ(t)}) ,

where pℓ(t;h) =
N−ℓ∑
i=1

πi(t;h)πi+ℓ(t;h)

PN(t;h)
,

and a simple and consistent choice of the estimator of errors’ variance σ2(t) at t is

σ̂2(t) :=
1

N

N∑
n=1

1

2

(
Yn,i(t) − Yn,i(t)+1

)2
,

where, for each n, i(t), i(t) + 1 are the indices of the two closest domain points Tn,i to t.

The adaptive autocovariance estimator is Γ∗
N,ℓ(s, t) = Γ∗

N,ℓ(s, t;h
∗
Γ) where

Γ̂N,ℓ(s, t;h)=
N−ℓ∑
n=1

πn(s;h)πn+ℓ(t;h)

PN,ℓ(s, t;h)
X̂n(s;h)X̂n+ℓ(t;h)− µ∗

N(s)µ
∗
N(t),

where X̂n(s;h) and X̂n+ℓ(t;h) are Nadaraya-Watson (NW) estimators ofXn(s) andXn+ℓ(t)
respectively, and

PN,ℓ(s, t;h) =
N−ℓ∑
n=1

πn(s;h)πn+ℓ(t;h).

Like in the case of mean estimation, the optimal bandwidth h∗
Γ is defined as the opti-

mum of an explicit risk bound, similar to R̂µ(t;h). As a variation of the existing method,
we further investigate how two bandwidth parameters can be allowed in autocovariance
estimation.
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