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Abstract

In this supplement we provide the proofs of the lemmas and additional technical statements
given in the Appendix of the main document. We also provide further empirical results and details
on the construction of our simulation setups and the real data case.

In section S.1 the proofs of the technical lemmas stated in the Appendix section A are given.
Additional results for the local regularity estimation in the case of differentiable sample paths
are stated and proved in section S.2. The proof of the lemmas used in the Appendix section C
are given in section S.3 below. Details of the simulation setups, additional simulation results and
insight on the choice of the tuning parameters involved in the local regularity estimation are given
in section S.4.
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S.1 Proofs of lemmas for the local regularity and examples

In this section we provide the proofs of lemmas in the Appendix of the manuscript and a formal
justification for the Examples 2 to 6. For the sake of readability, we reproduce each of the statements
before providing the proof.

S.1.1 Local regularity properties

Lemma 1. Assume that X belongs to X (δ + Hδ,Lδ, J) for some δ ∈ N∗, J an open sub-interval of
I, 0 < Hδ < 1, and a bounded vector-valued function Lδ ∈ Rδ+1

+ . Then, for any d ∈ {0, . . . , δ − 1}, X
belongs to X (d+Hd,Ld, J) with Hd ≡ 1 and some bounded vector-valued function Ld ∈ Rd+1

+ .

Proof of Lemma 1. By the definition of X (δ + Hδ,Lδ, J), the Assumption (H6)-(a) is satisfied for
any d < δ. Let us next fix t ∈ J , and d ∈ {0, . . . , δ − 1}. By definition, ∆δ,0 > 0 exists such
that [t − ∆δ,0/2, t + ∆δ,0/2] ⊂ J and (4) holds true for δ. By the Mean-Value Theorem, ∀u, v ∈
[t−∆δ,0/2, t+∆δ,0/2] such that u ≤ t ≤ v, there exists w ∈ (u, v), which may depend on d, such that

E
[∣∣∇dX(u)−∇dX(v)

∣∣2] = (u− v)2E
[(
∇d+1X(w)

)2]
= (u− v)2

{
L2
d,t + 2E1(d) + E2(d)

}
,

where L2
d,t := E

[(
∇d+1X(t)

)2] ∈ [ ad+1, ad+1] and

E1(d) := E
[
∇d+1X(t)

(
∇d+1X(w)−∇d+1X(t)

)]
, E2(d) := E

[(
∇d+1X(w)−∇d+1X(t)

)2]
.

By Cauchy-Schwartz inequality we get∣∣∣E [∣∣∇dX(u)−∇dX(v)
∣∣2]− L2

d,t(u− v)2
∣∣∣ = |2E1(d) + E2(d)| (u− v)2

≤
(
2Ld,t

√
E2(d) + E2(d)

)
(u− v)2

≤
(
2
√
ad+1

√
E2(d) + E2(d)

)
(u− v)2. (S.1)

It thus remains to bound E2(d). Without loss of generality, the length of J is assumed smaller than 1.
The case of d ≤ δ−2. By the Mean-Value Theorem, condition (3), and since |w−t| ≤ |u−v| ≤ ∆δ,0,

E2(d) = E
[∣∣∇d+1X(w)−∇d+1X(t)

∣∣2] ≤ ad+2(w − t)2 ≤ ad+2|u− v|2.

Then (S.1) implies (4) with ∆d,0 = ∆δ,0, Hd,t = 1, S2
d = 2

√
ad+1

√
ad+2 + ad+2 and βd = 1/2.

The case d = δ − 1. Since |w − t| ≤ |u− v| ≤ ∆δ,0 < 1, condition (4) considered with δ implies

E2(δ− 1) = E
[∣∣∇δX(w)−∇δX(t)

∣∣2] ≤ L2
δ,t|w− t|2Hδ,t +S2

δ |w− t|2Hδ,t+2βδ ≤ {L2
δ,t+S2

δ}|u− v|2Hδ,t .

We then deduce from (S.1) that, ∀|u− v| ≤ ∆δ−1,0 = ∆δ,0,∣∣∣E [∣∣∇dX(u)−∇dX(v)
∣∣2]− L2

d,t(u− v)2
∣∣∣ ≤ S2

δ−1|u− v|2Hd,t+2βd with Hd,t = 1, βd = H,

S2
δ−1 = 2

√
ad+1

√
L
2
+ S2

δ+L
2
+S2

δ , where supt∈J Lδ,t ≤ L, 0 < H ≤ inft∈J Hδ,t. Then (4) follows.

Example 2. [Local regularity of FAR(1)] Let {Xn} be the stationary FAR(1) time series defined by an
integral operator with kernel ψ and with an MfBm functional white noise with Hurst exponent function
Hξ. Under the conditions stated in Example 2, {Xn} belongs to X (Hξ, 1; I).
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Proof of the statement in Example 2. Let t in the interior of I, and u, v ∈ I such that u ≤ t ≤ v.
Without loss of generality, assume the length of I is equal to 1. By Jensen’s inequality,

|{Xn(u)−Xn(v)} − {ξn(u)− ξn(v)}|2 ≤
∫
I

|ψ(s, u)− ψ(s, v)|2X2
n−1(s)ds ≤ C|u−v|2Hψ

∫
I

X2
n−1(s)ds.

Using the stationarity of {Xn}, we have∣∣∣ν2 (Xn(u)−Xn(v))− ν2 (ξn(u)− ξn(v))
∣∣∣

≤ ν2 ({Xn(u)−Xn(v)} − {ξn(u)− ξn(v)}) ≤ C1/2ν2(∥X∥∞)|u− v|Hψ .

By the properties of the MfBm, assuming supu∈I Hξ,u < 1,

ν22 (ξn(u)− ξn(v)) = |u− v|2Hξ,t
{
1 +O(|u− v|2βξ)

}
,

for some βξ > 0 (Wei et al., 2023). Next, since |x2 − y2| ≤ |x− y|2 + 2|y||x− y|, we get∣∣∣E [|Xn(u)−Xn(v)|2
]
− |u− v|2Hξ,t

∣∣∣ ≤ C0(C0 + 2)|u− v|2Hξ,t+2β0 ,

with C0 = C1/2ν2(∥X∥∞) and β0 = min{βξ, Hψ −Hξ,t} > 0. Hence, {Xn} belongs to X (Hξ, 1; I).

S.1.2 Lemmas on Lp −m−approximability

We first provide the proofs for the results stated in the Appendix of the manuscript. For the sake of
readability, we recall the notation and the statements. The multiplication operator ⊗ is defined as

(f ⊗ g)(s, t) = f(s)g(t) ∀s, t ∈ I and ℓ ∈ Z.

Meanwhile, the tensor product ◦ is defined as

(Xn ◦ Yn) (g) = ⟨Yn, g⟩HXn, ∀Xn, Yn, g ∈ C.

Finally, L = L(C, C) is the space of bounded linear operators on C(I) equipped with the sup-norm.

Lemma 2. Let {Xn} and {Yn} be two LpC−m−approximable sequences in C, for some p ≥ 4. Define :

1. Z
(1)
n = A(Xn), where A ∈ L ;

2. Z
(2)
n = Xn + Yn;

3. Z
(3)
n = XnYn;

4. Z
(4)
n = ⟨Xn, Yn⟩H ∈ R;

5. Z
(5)
n = Xn ◦ Yn ∈ L;

6. Z
(6)
n = Xn ⊗Xn+ℓ, where here {Xn} is LpC −m−approximable for some p ≥ 8.

Then {Z(1)
n }, {Z(2)

n } are LpC −m−approximable sequences in C, and {Z(6)
n } is Lp/2C −m−approximable

sequences in C and its Lp/2C −m−approximation is X
(m)
n ⊗ X

(m+ℓ)
n+ℓ . If Xn and Yn are independent,

then {Z(3)
n }, {Z(4)

n } and {Z(5)
n } are Lp −m−approximable in their respective spaces.

Proof of Lemma 2. We use the simplified notation Zn for all the points of the Lemma. Moreover,
without loss of generality, we assume the length of I is equal to 1.

1) Let Zn = A(Xn), and let Z
(m)
n = A(X

(m)
n ) be its coupled version. The definitions of L and

|||A|||∞ entail that

νp

(
∥Zn − Z(m)

n ∥∞
)
≤ |||A|||∞νp

(
∥Xn −X(m)

n ∥∞
)
.
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Since {Xn} is LpC −m−approximable, the sequence {νp(∥Zn−Z
(m)
n ∥∞),m ∈ Z} thus converges in the

sense of condition 4 in Definition 3. As a consequence, {Zn} is LpC −m−approximable.
2) If Zn = Xn + Yn, we have

νp

(
∥Zn − Z(m)

n ∥∞
)
≤ νp

(
∥Xn −X(m)

n ∥∞
)
+ νp

(
∥Yn − Y (m)

n ∥∞
)
,

and the statement is a direct consequence of the fact that {Xn} and {Yn} are LpC −m−approximable.
3) When Zn(t) = Xn(t)Yn(t), ∀t ∈ I, we note that

Zn − Z(m)
n = Xn

(
Yn − Y (m)

n

)
+ Y (m)

n

(
Yn − Y (m)

n

)
.

By the independence between Xn and Yn, we have

νp

(
∥Zn − Z(m)

n ∥∞
)
≤ νp (∥Xn∥∞) νp

(
∥Yn − Y (m)

n ∥∞
)
+ νp

(
∥Y (m)

n ∥∞
)
νp

(
∥Xn −X(m)

n ∥∞
)
.

Using the stationarity, νp(∥Y (m)
n ∥∞) = νp (∥Yn∥∞) and νp (∥Xn∥∞) are constants. Hence, {Zn} is

LpC −m−approximable.
4) If Zn = ⟨Xn, Yn⟩H, we have∣∣∣Zn − Z(m)

n

∣∣∣ = ∣∣∣⟨Xn, Yn⟩H − ⟨X(m)
n , Y (m)

n ⟩H
∣∣∣ ≤ ∥∥∥XnYn −X(m)

n Y (m)
n

∥∥∥
∞
,

and thus
νp

(
Zn − Z(m)

n

)
≤ νp

(
∥XnYn −X(m)

n Y (m)
n ∥∞

)
.

By the property at point 3), {Zn} is Lp −m−approximable.

5) Here Zn is the Hilbert-Schmidt operator defined by the tensor product (Xn ◦Yn)(·) = ⟨Xn, ·⟩Yn.
Thus the notion of Lp −m−approximability is considered with C replaced by the space L equipped
with |||·|||∞, which is a Banach space. Since |||·|||∞ ≤ |||·|||2, and[

Zn(ej)− Z(m)
n (ej)

]
(t) = ⟨Xn, ej⟩HYn(t)− ⟨X(m)

n , ej⟩HY (m)
n (t) =

〈
XnYn(t)−X(m)

n Y (m)
n (t), ej

〉
,

using Parseval’s identity, we get

∣∣∣∣∣∣∣∣∣Zn − Z(m)
n

∣∣∣∣∣∣∣∣∣2
∞

≤
∞∑
j=1

∥∥∥Zn(ej)− Z(m)
n (ej)

∥∥∥2
H

≤
∫
I

 ∞∑
j=1

〈
XnYn(t)−X(m)

n Y (m)
n (t), ej

〉2 dt

=

∫
I

∥XnYn(t)−X(m)
n Y (m)

n (t)∥2Hdt =
∫∫

I×I

(
Xn(s)Yn(t)−X(m)

n (s)Y (m)
n (t)

)2
dsdt.

Next, since (ab− cd)2 ≤ 2a2(b− d)2 + 2d2(a− c)2, we get(
Xn(s)Yn(t)−X(m)

n (s)Y (m)
n (t)

)2
≤ 2

[
Xn(s)

(
Yn(t)− Y (m)

n (t)
)]2

+ 2
[
Y (m)
n (t)

(
Xn(s)−X(m)

n (s)
)]2

.

By Cauchy-Schwarz inequality and the subadditivity of x 7→
√
x,∣∣∣∣∣∣∣∣∣Zn − Z(m)

n

∣∣∣∣∣∣∣∣∣
∞

≤
√
2
(
∥Xn∥2∞∥Y − Y

(m)
n ∥2∞ + ∥Y (m)

n ∥2∞∥Xn − Y
(m)
n ∥2∞

)
,

≤
√
2
(
∥Xn∥∞∥Y − Y (m)

n ∥∞ + ∥Y (m)
n ∥∞∥Xn − Y (m)

n ∥∞
)
.

Since νp(·) is a norm, and the processes Xn ans Yn are independent, we get,

νp

(∣∣∣∣∣∣∣∣∣Zn − Z(m)
n

∣∣∣∣∣∣∣∣∣
∞

)
≤ νp (∥Xn∥∞) νp

(
∥Yn − Y (m)

n ∥∞
)
+ νp (∥Yn∥∞) νp

(
∥Xn −X(m)

n ∥∞
)
.

We then conclude that {Zn} is LpL −m−approximable.
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6) Here, Zn = Xn ⊗Xn+ℓ and we have

Zn = f(ξn, ξn−1, . . .) ◦ f(ξn+ℓ, ξ(n+ℓ)−1, . . .) = g
(
ξn+ℓ, ξ(n+ℓ)−1, . . . , ξn, ξn−1, . . .

)
.

Thus, we can define

Z(m)
n = g

(
ξn+ℓ, ξ(n+ℓ)−1, . . . , ξn, ξn−1, . . . , ξ

(m)
n−m, ξ

(m)
n−(m+1), . . .

)
= X(m)

n ⊗X
(m+ℓ)
n+ℓ ,

which entails that

Zn − Z(m)
n = Xn ⊗Xn+ℓ −X(m)

n ⊗X
(m+ℓ)
n+ℓ

=
(
Xn −X(m)

n

)
⊗Xn+ℓ +X(m)

n ⊗
(
Xn+ℓ −X

(m+ℓ)
n+ℓ

)
,

and
∥Zn − Z(m)

n ∥∞ ≤ ∥Xn −X(m)
n ∥∞∥Xn+ℓ∥∞ + ∥X(m)

n ∥∞∥Xn+ℓ −X
(m+ℓ)
n+ℓ ∥∞.

By Cauchy-Schwartz inequality, we then have

νp/2

(
∥Zn − Z(m)

n ∥∞
)
≤ νp

(
∥Xn −X(m)

n ∥∞
)
νp (∥Xn+ℓ∥∞)

+ νp

(
∥X(m)

n ∥∞
)
νp

(
∥Xn+ℓ −X

(m+ℓ)
n+ℓ ∥∞

)
,

and thus {Zn} is Lp/2C −m−approximable. This conclude the proof of the Lemma.

Lemma 3. Let {Xn}n∈Z be a LpC − m-approximable sequence. Let s, t ∈ I, t ̸= s, and let c be a
constant. Define

Fn = Xn(t) ∈ R and Gn = (Xn(s)−Xn(t))
2
+ c.

Then {Fn} is Lp −m−approximable in Lp and {Gn} is Lp/2 −m−approximable in Lp/2.

Proof of Lemma 3. With F
(m)
n = X

(m)
n (t), we have

νp

(
Fn − F (m)

n

)
≤ νp

(
∥Xn −X(m)

n ∥∞
)
.

The LpC−m−approximability of {Xn} therefore involves the Lp−m−approximability of {Fn}. For Gn,
let G

(m)
n = {X(m)

n (s)−X
(m)
n (t)}2. By Lemma A.2, {Xn(s)−Xn(t), n ∈ Z} is Lp −m−approximable.

Using the Cauchy Schwarz inequality and the stationarity, it is straightforward to deduce that Gn is
Lp/2 −m−approximable.

S.1.3 Examples of Lp −m−approximable FTS

Example 3 (Lp − m−approximability of FAR(1)). Let Ψ be a bounded linear operator such that
|||Ψ|||∞ < 1 and {ξn} ⊂ L2

C be i.i.d. with mean zero. A zero mean sequence {Xn} of elements of C
follows a FAR(1) model if

Xn(t) = Ψ(Xn−1)(t) + ξn(t), t ∈ I, n ∈ Z,

see Bosq (2000, Theorem 3.1). Then {Xn} is LpC −m−approximable.

Proof of the statement in Example 3. According to the Theorem 3.1. of Bosq (2000), the FAR model
has a unique stationary solution {Xn} ⊂ L2

H and admits a moving average (linear) representation

Xn =

∞∑
j=0

Ψj(ξn−j),
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where Ψj is the jth iterate of Ψ. For each n, let {ξ(n)j , j ∈ Z} be an independent copy of {ξj , j ∈ Z}.
Then, the approximation of Xn is given by

X(m)
n =

m−1∑
j=0

Ψj(ξn−j) +

∞∑
j=m

Ψj(ξ
(n)
n−j),

and using the linearity of Ψ, we get

Xn −X(m)
n =

∞∑
j=m

Ψj
(
ξn−j − ξ

(n)
n−j

)
.

Applying the sup-norm and νp on both sides, using the triangle inequality, noting that {ξj} and {ξ(n)j }
are i.i.d., and |||Ψ|||∞ < 1, we get

νp

(
∥Xn −X(m)

n ∥∞
)
≤ 2νp(ξ)

∞∑
j=m

|||Ψ|||j∞ ≤ |||Ψ|||m∞
2νp(ξ)

1− |||Ψ|||∞
→ 0, as m→ ∞,

where ξ has the same distribution as ξj , and

∞∑
m=1

νp

(
∥Xn −X(m)

n ∥∞
)
<∞.

It follows that {Xn} is LpC −m-approximable.

Example 4 (Lp−m-approximability of general linear process). Suppose {Xn} ∈ L2
C is a linear process

like in the Example 4, with the errors distributed as ξ and satisfying νp(∥ξ∥∞) <∞, p ≥ 2. Moreover,
the operators satisfy the condition

∞∑
m=1

∞∑
j=m

|||Ψj |||∞ <∞.

Then {Xn} is LpC −m-approximable.

Proof of statement in Example 4. Let {ξ(n)j } be an independent copy of {ξj} for each n. Then, the
LpC −m−approximation of Xn is given by

X(m)
n =

m−1∑
j=0

Ψj(ξn−j) +

∞∑
j=m

Ψj(ξ
(n)
n−j).

Thus, following closely the same steps as the FAR(1), we have

νp

(
∥Xn −X(m)

n ∥∞
)
≤ νp

∥∥∥∥∥∥
∞∑
j=m

Ψj

(
ξn−j − ξ

(n)
n−j

)∥∥∥∥∥∥
∞

 ≤ 2νp(∥ξ∥∞)

∞∑
j=m

|||Ψj |||∞,

and thus
∞∑
m=1

νp

(
∥Xn −X(m)

n ∥∞
)
≤ 2νp(ξ)

∞∑
m=1

∞∑
j=m

|||Ψj |||∞ <∞.

This shows that {Xn} is LpC −m−approximable.

Example 5 (Lp −m-approximability of product process). Suppose that {Yn} ⊂ LpC and {Un} ⊂ Lp
are two independent Lp −m−approximable sequences in the respective spaces. Their representations
are Yn = gY (η1, η2, . . . ) and Un = gU (γ1, γ2, . . . ), respectively, where {ηk}k and {γk}k are two i.i.d.
random sequences. Then, the sequence Xn(·) = UnYn(·) is LpC −m−approximable sequence.
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Proof of statement in Example 5. Let X
(m)
n = U

(m)
n Y

(m)
n be the LpC −m−approximation of Xn. Then,

Xn −X(m)
n = UnYn − U (m)

n Y (m)
n = Un

(
Yn − Y (m)

n

)
+ Y (m)

n

(
Un − U (m)

n

)
,

taking the νp norm both sides, we have

νp

(
∥Xn −X(m)

n ∥∞
)
≤ νp

(
∥Un

(
Yn − Y (m)

n

)
∥∞
)
+ νp

(
∥Y (m)

n

(
Un − U (m)

n

)
∥∞
)
.

Using stationarity and the independence between Yn and Un, we get

νp

(
∥Xn −X(m)

n ∥∞
)
≤ νp (Un) νp

(
∥Yn − Y (m)

n ∥∞
)
+ νp (∥Yn∥∞) νp

(
Un − U (m)

n

)
.

Thus,

∞∑
m=1

νp

(
Xn −X(m)

n

)
≤ νp (Un)

∞∑
m=1

νp

(
Yn − Y (m)

n

)
+ νp (Yn)

∞∑
m=1

νp

(
Un − U (m)

n

)
<∞,

since Yn and Un are Lp −m−approximable the respective spaces. This concludes the proof.

Example 6 (Lp −m−approximability of ARCH model). Let δ ∈ C be a positive function and {ξn} a
sequence of independent copies of ξ ∈ LpC. Let β(s, t) be a continuous non-negative kernel function in
L2 (I × I). Then,

Yn(t) = ξn(t)σn(t) where σ2
n(t) = δ(t) +

∫
I

β(s, t)Y 2
n−1(s)ds, (S.2)

is the so-called functional ARCH(1) series. If for some p > 0

E
{
H(ξ2)

}p/2
< 1 with H(ξ2) = sup

t∈I

∫ 1

0

β(s, t)ξ2(s)ds,

then (S.2) has a unique, strictly stationary solution {Yn}, which is is LpC −m−approximable.

Proof of statement in Example 6. The existence and uniqueness of the solution of (S.2) was proved
by Hörmann et al. (2013). Theorem 2.2 of Hörmann et al. (2013) shows that {σn} admits the MA
representation

σ2
n = g(ξn−1, ξn−2, . . .),

with some positive, measurable g ∈ C. For each n, let {ξ(n)j } be an independent copy of {ξj}. Then,
the coupled version of Yn is given by

Y (m)
n = ξnσ

(m)
n ,

where {σ(m)
n }2 = g(ξn, . . . , ξn−m+1, ξ

(n)
n−m+1, ξ

(n)
n−m−1, . . .) is the coupled version of σ2

n. Note that

∥Yn − Y (m)
n ∥∞ ≤ ∥ξn∥∞

∥∥∥σ2
n − {σ(m)

n }2
∥∥∥1/2
∞

,

because |σn + σ
(m)
n | ≥ |σn − σ

(m)
n |. Since ξn is independent of σ2

n − {σ(m)
n }2, we get

E
{
∥Yn − Y (m)

n ∥p∞
}
≤ E {∥ξ∥p∞}E

{∥∥∥σ2
n − {σ(m)

n }2
∥∥∥p/2
∞

}
.

Theorem 2.3 of Hörmann et al. (2013) provides the following upper bound

E
{∥∥∥σ2

n − {σ(m)
n }2

∥∥∥p/2
∞

}
≤ crm, ∀n,m,

where 0 < r = r(p/2) < 1 and c = c(p/2) <∞. Consequently, we have,

νp

(
∥Yn − Y (m)

n ∥∞
)
≤ c1/prm/pνp (∥ξ∥∞) , ∀n,m.

Then the series of general term νp

(
∥Ym − Y

(m)
m ∥∞

)
is convergent, and this shows that {Yn} is Lp −

m−approximable.
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S.1.4 Technical lemma: proxies error

Lemma 4 (Proxies accuracy). Let t ∈ J .

1. For any φ ∈ (0, 1) and 0 < ∆ ≤ ∆0,0 such that 4∆2β0S2
0 < L2

t log(2)φ, we have

|H̃t −Ht| < φ/2.

2. Let H ∈ (0, 1] such that |H − Ht| < φ < 1. For any ψ ∈ (0, 1) and 0 < ∆ ≤ ∆0,0 such that
S2
0∆

2β0−2φ < ψ/3, we have ∣∣∣∣θ(t1, t3)− Lt∆
2Ht

∆2H

∣∣∣∣ < ψ/3.

Proof of Lemma 4. 1. By condition (4), we may rewrite θ(u, v) for u, v ∈ [t−∆/2, t+∆/2] as

θ(u, v) = L2
t |u− v|2Ht{1 + ρ(u, v)},

where |ρ(u, v)| ≤ (S0/Lt)
2
∆2β0 . Since 4∆2β0S2

0 < L2
t log(2), we have |ρ(u, v)| < 1/2. Using the fact

that x 7→ log(1 + x) is Lipschitz continuous on x ∈ (−1/2,∞), we get∣∣∣H̃t −Ht

∣∣∣ = | log(1 + ρ(t1, t3))− log(1 + ρ(t1, t2))|
2 log(2)

≤ 1

log(2)
(|ρ(t1, t3)|+ |ρ(t1, t2)|) ≤

2

log(2)
(S0/Lt)

2
∆2β0 < φ/2.

2. By condition (4), if ∆2β0−2φS2
0 < ψ/3, we get∣∣∣∣θ(t1, t3)− L2

t∆
2Ht

∆2H

∣∣∣∣ < S2
0∆

2β0+2(Ht−H) < S2
0∆

2β0−2φ < ψ/3.

S.1.5 Technical lemma: Nagaev inequality

The local regularity estimators in Section 3 are functions of

θ̂(u, v) =
1

N

N∑
n=1

(
X̃n(v)− X̃n(u)

)2
, u, v ∈ J.

To study the properties of θ̂(u, v), we use the Nagaev-type inequality for sums of dependent random
variables, see Liu et al. (2013). When dealing with real valued random variable, the dependence
measure used in Lp − m−approximation is slightly more restrictive that the functional dependence
measure defined in Wu (2005, Definition 1).

Wu (2005, Theorem 1) establishes that the measure of dependence of a stationary causal random
variable Xn on {ξj , j ≥ m} can be bounded by the dependence measures of Xn on individual ξj ’s.
Therefore, the author considers only the element-wise dependence in the sequel of his work. In the
same way, Liu et al. (2013) adopt the functional dependence measure on individual ξj and state Nagaev
inequality in this framework.

Nagaev inequality of Liu et al. (2013). Let {Un, n ∈ Z} be a stationary, centered, real-valued
causal process of the form

Un = g(ξn, ξn−1, · · · ),

where {ξn}n∈Z are i.i.d. real random variables and g : R∞ → R is a measurable function. Let
{ξ′n, n ∈ Z} be an independent copy of {ξn, n ∈ Z}. A coupled version of Un is denoted by

U ′
m = g(ξm, ξm−1, · · · , ξ1, ξ′0, ξ−1, · · · ),
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and the corresponding distance is measured with

λm,p = νp(Um − U ′
m), υ =

∞∑
m=1

(
mp/2−1λpm,p

)1/(p+1)

.

We assume that a short-range dependence condition is satisfied, i.e.,
∑
m≥0 λm,p < ∞. Let Sn =

U1 + · · · + Un be the partial sum of the process. Liu et al. (2013, Theorem 2) provides Nagaev-type
inequality for S∗

N = max{|Sn|, n = 1, . . . , N},

∀ε > 0, P (S∗
N ≥ ε) ≤ cp

N

εp
(
υp+1 + ∥U1∥pp

)
+ c′p exp

(
− cpε

2

Nυ2+2/p

)
+ 2 exp

(
− cpε

2

N∥U1∥22

)
, (S.3)

where cp = 29p/ log(p) and c′p are two positives constants. The expression of the constant c′p depends
on the Gaussian-like tail function defined as:

Gq(y) =

∞∑
j=1

exp
(
−jqy2

)
, y > 0, q > 0.

For instance, if ε =
√
Nυ1+1/py and y ≥ 1, then we get c′p = 4G1−2/p(1)e. Now, if y < 1, we can take

a fix and very small y0 such that y ≥ y0 and obtain c′p = 4G1−2/p

(√
cpy0

)
exp{cpy20}. Finally, we can

consider,
c′p = max

{
4G1−2/p(1)e; 4G1−2/p

(√
cpy0

)
exp{cpy20}

}
.

Nagaev inequality under our weak dependency assumption. The inequality (S.3) involves
only element-wise dependence coefficients whereas the Lp−m-approximation measures the dependence
of Un on the whole sequence {ξj , j ≥ m}. Let us now consider {Un} a Lp−m−approximable stationary
process, and let the associated coupled version of Um be defined as

U (m)
m = g(ξm, ξm−1, · · · , ξ1, ξ(m)

0 , ξ
(m)
−1 , ξ

(m)
−2 , · · · ),

where, for each m ≥ 0, {ξ(m)
i , i ∈ Z} is an independent copy of {ξi, i ∈ Z}. Let

νm,p = νp

(
Um − U (m)

m

)
.

Lemma 5 states a version of Liu et al. (2013, Theorem 2) under Lp−m−approximability assumption.

Lemma 5 (Nagaev inequality). Let {Un} be a real centered valued Lp −m−approximable stationary
process such that

υ :=

∞∑
m=1

(
mp/2−1νpm,p

)1/(p+1)

<∞.

The Nagaev-type inequality remains true, that is

P (S∗
N ≥ ε) ≤ cp

N

εp
(
υp+1 + ∥U1∥pp

)
+ c′p exp

(
− cpε

2

Nυ2+2/p

)
+ 2 exp

(
− cpε

2

N∥U1∥22

)
,

where cp = 29p/ log(p) and c′p are two positives constants.

Proof of Lemma 5. The proof of this lemma follows closely the lines of the proofs of Liu et al. (2013,
Theorem 1 and Theorem 2), therefore some similar parts will be omitted. The key step is their
Equation (2.12) in the proof of Theorem 1 where ∥U1,j − U1,j−1∥p is bounded by λj,p, with Uk,j =
E [Uk|ξk, · · · , ξk−j ]. So it remains to show that ∥U1,j − U1,j−1∥p is also bounded by νj,p. Note that

U1,j − U1,j−1 = E [U1|ξ1, · · · , ξ1−j ]− E
[
U1|ξ1, · · · , ξ1−(j−1)

]
= E

[
g(ξ1, ξ0, · · · , ξ1−(j−1), ξ1−j , ξ1−(j+1), · · · )|ξ1, · · · , ξ1−j

]
− E

[
g(ξ1, ξ0, · · · , ξ1−(j−1), ξ1−j , ξ1−(j+1), · · · )|ξ1, · · · , ξ1−(j−1)

]
.
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Since {ξ(j)i }i∈Z is an independent copy of {ξi}i∈Z, the second conditional expectation of the last display

stay unchanged if we replace
{
ξ1−j , ξ1−(j+1), · · ·

}
by
{
ξ
(j)
1−j , ξ

(j)
1−(j+1), · · ·

}
, that is

U1,j − U1,j−1 = E [U1|ξ1, · · · , ξ1−j ]− E
[
U

(j)
1 |ξ1, · · · , ξ1−(j−1)

]
Since U

(j)
1 is independent of ξ1−j (it depends no longer on ξ1−j but on ξ

(j)
1−j), the variable ξ1−j can be

added in the conditioning part without changing the expression,

U1,j − U1,j−1 = E
[
U1 − U

(j)
1 |ξ1, · · · , ξ1−j

]
.

Now, using Jensen’s inequality, we get

E [|U1,j − U1,j−1|p] ≤ E
[∣∣∣U1 − U

(j)
1

∣∣∣p] .
Using the stationarity of {Un} we obtain

∥U1,j − U1,j−1∥p ≤ νj,p,

which conclude the proof.

S.1.6 Technical lemma: concentration of θ̂(u, v)

We now study the concentration of θ̂(u, v) and θ̂(u, v)/θ(u, v).

Lemma 6. Assume the conditions of Theorem 1 hold true. Let u, v ∈ J , u ≤ t ≤ v, be fixed points
such that ∆/2 ≤ |u− v| ≤ ∆ and let

η0 = η0(λ) = 8
(
2
√
a0 +

√
R2(λ)

)√
R2(λ).

For any κ > 0, define the probabilities

p+0 (u, v;κ) = P
[
θ̂(u, v) > (1 + κ)θ(u, v)

]
, p−0 (u, v;κ) = P

[
θ̂(u, v) < (1− κ)θ(u, v)

]
.

Then, for any η such that η0 < η < 1, we have

P
(∣∣∣θ̂(u, v)− θ(u, v)

∣∣∣ > η
)
≤ a

Nη2
+ b exp

(
−eNη2

)
,

where b is a universal constant, and a and e are two positive constants depending on the dependence
measure and the bound of the fourth-order moment of X̃(u). Moreover, for any κ such that η0 <
κθ(u, v) < 1, we have:

max
[
p+0 (u, v;κ), p

−
0 (u, v;κ)

]
≤ 22Ht+2a

Nκ2L4
t∆

4Ht
+ b exp

(
− e

2Ht+2
Nκ2L4

t∆
4Ht
)
.

Proof of Lemma 6. We write θ̂(u, v)−θ(u, v) as the sum of a bias term and a centered stochastic term :

θ̂(u, v)− θ(u, v) =
1

N

N∑
n=1

Zn(u, v) +
{
E
(
θ̂(u, v)

)
− θ(u, v)

}
, u, v ∈ J,

where Zn = Zn(u, v) =
(
X̃n(u)− X̃n(v)

)2
− E

(
X̃n(u)− X̃n(v)

)2
.

Bounds for the bias term. Since {Xn} is stationary and the sequence

{ζn = (Mn, Tn,1, . . . , Tn,Mn , εn,1, . . . , εn,Mn), n ≥ 1},
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are i.i.d. (see (H2), (H3), (H4) and (H5)), the process {X̃n} is stationary and we thus have

E
[
θ̂(u, v)

]
− θ(u, v) = 2E [{Gn(u)−Gn(v)}{Xn(u)−Xn(v)}] + E

[
{Gn(u)−Gn(v)}2

]
,

where Gn(u) = X̃n(u) −Xn(u). By Assumption (H10) and the inequality (x + y)2 ≤ 2(x2 + y2), we
get E

[
{Gn(u)−Gn(v)}2

]
≤ 4R2(λ) ≤ 4Bλ−τ . Cauchy-Schwarz inequality then implies∣∣∣E [θ̂(u, v)]− θ(u, v)

∣∣∣ ≤ η0/2. (S.4)

Concentration bounds for the stochastic term. Recall that, for any N ≥ 1, the finite
sequence {ζn, 1 ≤ n ≤ N} is i.i.d. and this implies that the finite sequence {X̃n, 1 ≤ n ≤ N} is also

stationary. We now complete these finite sequences to infinite ones, {ζn, n ∈ Z} and {X̃n, n ∈ Z},
by generating independent Mn from the same distribution as M1, . . . ,MN , and independent copies
(Tn,1, εn,1), . . . , (Tn,Mn

, εn,Mn
) of (T, ε), for any n ̸∈ {1, . . . , N}. By the definition (9) and using the

MA representation of {Xn}, see (6) in Definition 3, we can rewrite X̃n as,

X̃n(u) =

Mn∑
i=1

Wn,i(u)Xn(Tn,i) +

Mn∑
k=1

Wn,i(u)σ(Tn,i)εn,i

=

Mn∑
i=1

Wn,i(u)f(ξn, ξn−1, . . .)(Tn,i) +

Mn∑
i=1

Wn,i(u)σ(Tn,i)εn,i = g ((ζn, ξn), (ζn−1, ξn−1), . . .) ,

where {(ζn, ξn)} is an i.i.d. sequence in the measurable space S̃ = N∗ × {∪m≥1[0, 1]
m × Rm} × S and

g : S̃∞ → H is some measurable function. Then a coupled version of X̃m(u) is

X̃(m)
n (u) =

Mn∑
i=1

Wn,i(u)X
(m)
n (Tn,i) +

Mn∑
i=1

Wn,i(u)σ(Tn,i)εn,i, m ≥ 1.

From this and (H9), a constant C exists such that |X̃(m)
n (u)− X̃n(u)| ≤ C∥Xn −X

(m)
n ∥∞. According

to Definition 3, the sequence is L4 − m−approximable. Lemma 3 then entails that the sequence

{Zn} = {Zn(u, v)} is L2 −m−approximable. Let νm,2 = ν2(Zm −Z
(m)
m ) be its dependence coefficient,

where Z
(m)
m is the associated coupled version of Zm. Using Cauchy-Schwartz inequality, we get

νm,2 ≤ 8ν4

(
∥X̃m∥∞

)
ν4

(∥∥∥Xm −X(m)
m

∥∥∥
∞

)
.

Since {Xn} satisfies (H7), σ(·) is bounded and (H8) guarantees ν4(ε) < ∞, we necessarily have

ν4(∥X̃n∥∞) ≤ C, for some constant C independent of n. Finally, since ν4(∥Xm−X(m)
m ∥∞) = O(1/mα)

with α > 3/2, the dependence coefficient of {Zn} satisfies the condition ν :=
∑∞
m=1 ν

2/3
m,2 < ∞, which

will allow us to apply Lemma 5. More precisely, in view of (S.4), we deduce that ∀η ∈ (η0, 1),

P
(
θ̂(u, v)− θ(u, v) > η

)
≤ P

(
1

N

N∑
n=1

Zn > η/2

)
.

Applying then Nagaev-type inequality from Lemma 5, we get

P
(
θ̂(u, v)− θ(u, v) > η

)
≤

4c2
(
ν3 + ν22(Z1)

)
Nη2

+ c′2 exp
(
− c2
4ν3

Nη2
)
+ 2 exp

(
− c2
4ν22(Z1)

Nη2
)

≤ a

Nη2
+ b exp

(
−eNη2

)
,

where a = 4c2
(
ν3 + ν22(Z1)

)
, b = c′2 + 2 and e = min

(
c2/(4ν

3), c2/(4ν
2
2(Z1))

)
. Moreover, by (4) and

(12) we have
θ(u, v) ≥ |u− v|2HtL2

t/2 > 0.
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This implies θ(u, v) > η0, provided λ is sufficiently large, and κ > 0 exists such that η0 < κθ(u, v) < 1.
We can then consider η = κθ(u, v) in Lemma 5 and deduce

p+0 (u, v;κ) = P
(
θ̂(u, v) > (1 + κ)θ(u, v)

)
≤ a

Nκ2θ2(u, v)
+ b exp

(
−eNκ2θ2(u, v)

)
,

≤ 24Ht+2a

Nκ2L4
t∆

4Ht
+ b exp

(
− e

24Ht+2
Nκ2L4

t∆
4Ht
)
.

Similar arguments apply for bounding p−0 (u, v;κ). The proof of Lemma 6 is thus complete.

S.2 Local regularity estimation for smooth trajectories

Let us recall that, following the lines of Golovkine et al. (2022), in Section 3.2 we defined

δ̂ = min
{
d ∈ N : Ĥd,t < 1− φ(λ̂)

}
,

where Ĥd,t is an estimator of the local regularity exponent parameter of {∇dXn} at t, estimator to be
defined below. A natural estimator of the local regularity parameter αt is then

α̂t = δ̂ + Ĥδ̂,t.

The sequential procedure based on δ̂ was summarized in Algorithm 1. It thus remains to study the
estimators for the Hd, d = 1, 2 . . ., introduced in Section 3.2. Like in the non-differentiable case, we
first define proxies for these quantities that we next estimate nonparametrically.

Proxy values of Hd,t and L2
d,t. Let d ≥ 1, ∆ ≤ ∆d,0 and t1, t2, t3 ∈ J such that t3 − t1 = ∆ and

t2 = t = (t1 + t3)/2. In view of (H6), we consider the following proxy values of Hd,t and L
2
d,t :

H̃d,t = H̃d(∆) =
log(θd(t1, t3))− log(θd(t1, t2))

2 log(2)
,

L̃2
d,t = L̃2

d,t(∆) =
θd (t1, t3)

∆2Hd,t
, where θd(u, v) = E

[{
∇dX(u)−∇dX(v)

}2]
.

Like in the non-differentiable case, an estimator of θd(u, v), u, v ∈ J , is easily obtained from the
estimates of the d−th derivative of the samples paths.

Presmoothing the derivatives. Let d ≥ 1. Given the data points (Yn,i, Tn,i), 1 ≤ i ≤ Mn, we
consider a linear smoother under the form

∇̃dXn(u) =

Mn∑
i=1

W
(d)
n,i (u)Yn,i, u ∈ J, n = 1, . . . , N, (S.5)

where the weights {W (d)
n,i }i=1...Mn are built from the data points. The local smoother we have in mind is

the local polynomials. We consider the following assumptions for the presmoothing of the derivatives.

(D1) A constant cW > 0 exists such that

sup
n=1...N

sup
u∈J

Mn∑
i=1

∣∣∣W (d)
n,i (u)

∣∣∣ ≤ cW , ∀d ∈ {0, . . . , δ}.

(D2) Constants B > 0 and τ > 0 exit such that

R2,d(λ) = sup
u∈J

E
(
|∇̃dX(u)−∇dX(u)|2

)
≤ Bλ−τ , ∀d ∈ {0, . . . , δ}.

For instance, up to a slight modification, local polynomial smoothers satisfy the conditions (1) and
(2).
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Local regularity estimators of the d-th derivatives. For d ≥ 1, given a presmoothing estimator

∇̃dXn(u) of ∇dXn(u), for u ∈ J , we define the estimators of Hd,t and L
2
d,t as

Ĥd,t =
log θ̂d(t1, t3)− log θ̂d(t1, t2)

2 log(2)
,

L̂2
d,t =

θ̂d (t1, t3)

∆2Ĥd,t
where θ̂d(u, v) =

1

N

N∑
n=1

(
∇̃dXn(u)− ∇̃dXn(v)

)2
.

In view of the proof of Lemma 1, let us define

βd = 1/2 if d ≤ δ − 2, and βδ−1 = H,

L2
d,t := E

[(
∇d+1X(t)

)2] ∈ [ ad+1, ad+1], 1 ≤ d ≤ δ − 1,

and

S2
d = 2

√
ad+1

√
ad+2 + ad+2 if d ≤ δ − 2, and S2

δ−1 = 2
√
ad+1

√
L
2
+ S2

δ + L
2
+ S2

δ .

We now state the counterparts of Theorems 1 and 2 for the case of differentiable sample paths.
The proofs are provided in the next section.

Proposition 1. Assume that (H1) – (H8), (D1) – (D2) hold true. Let d ∈ {0, . . . , δ} and H̃d,t, L̃
2
d,t

are defined with ∆ ≤ ∆δ,0. Constants Cd exist such that, for any φ ∈ (0, 1) satisfying the conditions

∆2βdS2
d <

L2
d,t log(2)

4
φ, (S.6)

λ−τ/2 < CdL
2
d,tφ∆

2Hd,t , (S.7)

we have

P(|α̂t − αt| > φ) ≤ (2 + δ)

[
f

Nφ2∆4
+ b exp

(
−gNφ2∆4

)]
,

for some universal constant b, provided λ is sufficiently large. The constants Cd depend on the ad’s
from (3) and B from (D2), while the positive constants f and g depend one the dependence measure.

Proposition 2. Assume the conditions of Proposition 1 hold true. Moreover, constants C̃d > 0,
d ∈ {0, . . . , δ}, exist such that for any φ,ψ ∈ (0, 1) satisfying

3∆−2φ∆2βdS2
d < ψ, (S.8)

6L2
d,t∆

−2φφ| log∆| < ψ, (S.9)

λ−τ/2 < C̃d∆
2φψ∆2Hd,t , (S.10)

we have

P
(∣∣∣L̂2

d,t − L2
d,t

∣∣∣ > ψ
)
≤ cd
Nψ2∆4Hd+4φ

+
fd

Nφ2∆4Hd

+ 4b exp
(
−gdNφ

2∆4Hd
)
+ b exp

(
−ldNψ

2∆4Hd+4φ
)
,

for some universal constant b, provided λ is sufficiently large. The constants C̃d depend on the ad’s
and B, while the constants cd, fd, gd, ld are determined by the dependence structure of X.
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S.2.1 Proofs of the concentration bounds for regularity estimators

The proofs below are using conditions (D1) and (D2). In order to hold with local polynomials, condition
(D1) requires to modify the smoother, for instance to set it equal to zero, when the smallest eigenvalue
of the design matrix used to define it is too close to zero. See (see Tsybakov, 2009, equation (1.66)
and Assumption (LP), page 37). Under our assumptions, the probability of the event of the smallest
eigenvalue close to zero is exponentially small. See Golovkine et al. (2022). For simplicity, we omit
exponentially small probability events and assume (D1) holds true.

Let us recall, for d ≥ 1, ∆ ≤ ∆d,0 and t1, t2, t3 ∈ J such that t3 − t1 = ∆ and t2 = t = (t1 + t3)/2,
the proxy values of Hd,t and L

2
d,t are

H̃d,t = H̃d(∆) =
log(θd(t1, t3))− log(θd(t1, t2))

2 log(2)
,

L̃2
d,t = L̃2

d,t(∆) =
θd (t1, t3)

∆2Hd,t
, where θd(u, v) = E

[(
∇dX(u)−∇dX(v)

)2]
.

Moreover, given a presmoothing estimator ∇̃dXn(u) of ∇dXn(u), for u ∈ J , the estimators of Hd,t

and L2
d,t are defined as

Ĥd,t = Ĥd,t(∆) =
log θ̂d(t1, t3)− log θ̂d(t1, t2)

2 log(2)
,

L̂2
d,t = L̂2

d,t(∆) =
θ̂d (t1, t3)

∆2Ĥd,t
, where θ̂d(u, v) =

1

N

N∑
n=1

(
∇̃dXn(u)− ∇̃dXn(v)

)2
.

Lemma S.1. Assume that the assumptions of Corrolary 1 are satisfied.
Let u, v ∈ J , u ≤ t ≤ v, be fixed points such that ∆/2 ≤ |u − v| ≤ ∆ ≤ ∆δ,0 and, for any

d = 1, . . . , δ, let

ηd = ηd(λ) = 8

(
2
√
ad +

√
R2,d(λ)

)√
R2,d(λ),

and, for any κ > 0,

p+d (u, v;κ) = P
[
θ̂d(u, v) > (1 + κ)θd(u, v)

]
, p−d (u, v;κ) = P

[
θ̂d(u, v) < (1− κ)θd(u, v)

]
.

For any η such that ηd < η < 1,

P
(∣∣∣θ̂d(u, v)− θd(u, v)

∣∣∣ > η
)
≤ ad
Nη2

+ b exp
(
−edNη

2
)
, d = 1, . . . , δ,

where b is some universal constant, and ad and ed are two positive constants determined by the depen-
dence measure. Moreover, for any κ such that ηd < κθd(u, v) < 1, we have:

max
[
p+d (u, v;κ), p

−
d (u, v;κ)

]
≤ 24Hd+2ad
Nκ2L4

d,t∆
4Hd,t

+ b exp
(
− ed
24Hd,t+2

Nκ2L4
d,t∆

4Hd,t
)
, d = 1, . . . , δ.

Proof of Lemma S.1. Following the lines of the proof of Lemma 6, we can rewrite θ̂d(u, v) − θd(u, v)
as the sum of a zero mean stochastic term and a bias term,

θ̂d(u, v)− θd(u, v) =
1

N

N∑
n=1

Zn,d(u, v) +
{
E
[
θ̂d(u, v)

]
− θd(u, v)

}
,

where, for any n = 1, . . . , N,

Zn,d = Zn,d(u, v) =
(
∇̃dXn(u)− ∇̃dXn(v)

)2
− E

(
∇̃dXn(u)− ∇̃dXn(v)

)2
.

Bounds for the bias term. Since {Xn} is stationary and the sequence

{ζn = (Mn, Tn,1, . . . , Tn,Mn
, εn,1, . . . , εn,Mn

), n ≥ 1}
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is i.i.d. (see assumptions (H2),(H3),(H5) and (H4)), the processes
{
∇̃dXn

}
, 1 ≤ d ≤ δ, are also

stationary, and thus

E
[
θ̂d(u, v)

]
−θd(u, v) = 2E

[
{Gn,d(u)−Gn,d(v)}

{
∇dXn(u)−∇dXn(v)

}]
+E

[
{Gn,d(u)−Gn,d(v)}2

]
,

where Gn,d(u) = ∇̃dXn(u)−∇dXn(u). Since (x+ y)2 ≤ 2(x2 + y2), by Assumption (D2), we get

E
[
{Gn,d(u)−Gn,d(v)}2

]
≤ 4R2,d(λ).

Cauchy-Schwarz inequality then implies∣∣∣E [θ̂d(u, v)]− θd(u, v)
∣∣∣ ≤ ηd/2. (S.11)

Concentration bounds for the stochastic term. Recall that, for any N ≥ 1, the finite

sequence {ζn, 1 ≤ n ≤ N} is i.i.d. and this implies that the finite sequence {∇̃dXn, 1 ≤ n ≤ N} is also

stationary. We now complete these finite sequences to infinite ones, {ζn, n ∈ Z} and {∇̃dXn, n ∈ Z},
by generating independent Mn from the same distribution as M1, . . . ,MN , and independent copies
(Tn,1, εn,1), . . . , (Tn,Mn

, εn,Mn
) of (T, ε), for any n ̸∈ {1, . . . , N}. By the definition (S.5) and using the

MA representation of {Xn}, see (6) in Definition 3, we can rewrite ∇̃dXn as,

∇̃dXn(u) =

Mn∑
i=1

W
(d)
n,i (u)Xn(Tn,i) +

Mn∑
i=1

W
(d)
n,i (u)σ(Tn,i)εn,i,

=

Mn∑
i=1

W
(d)
n,i (u)f(ξn, ξn−1, . . .)(Tn,i) +

Mn∑
i=1

W
(d)
n,i (u)σ(Tn,i)εn,i,

= gd ((ζn, ξn), (ζn−1, ξn−1), . . .)

where {(ζn, ξn)} are i.i.d. in the measurable space S̃ = N∗×{∪m≥1[0, 1]
m × Rm}×S and gd : S̃∞ → H

is a measurable function. Then a coupled version of ∇̃dXn(u) is

∇̃dX
(m)

n (u) =

Mn∑
i=1

W
(d)
n,iX

(m)
n (Tn,i) +

Mn∑
i=1

W
(d)
n,i σ(Tn,i)εn,i, m ≥ 1.

A consequence is that ∣∣∣∣∇̃dX
(m)

n (u)− ∇̃dXn(u)

∣∣∣∣ ≤ cW ∥Xn −X(m)
n ∥∞,

according to Assumption (D1). By Definition 3, the sequence is then L4 −m−approximable. Lemma
3 then entails that the sequence {Zn,d} is L2 −m−approximable. Let

νm,2 = ν2

(
Zm,d − Z

(m)
m,d

)
,

be its dependence coefficient, where Z
(m)
m,d is the associated coupled version of Zm,d. Using Cauchy-

Schwartz inequality and the stationary, we get

νm,2 ≤ 8ν4

(∥∥∥∇̃dXm

∥∥∥
∞

)
ν4

(∥∥∥Xm −X(m)
m

∥∥∥
∞

)
.

Since {∇̃dXn} satisfies (D1), {Xn} satisfies (H7), σ(·) is bounded and (H8) guarantees ν4(ε) < ∞,

we necessarily have ν4(∥∇̃dXm∥∞) ≤ C, for some constant C independent of n. Finally, since by our

conditions ν4(∥Xm−X(m)
m ∥∞) = O(1/mα) with α > 3/2, the dependence coefficient of {Zm,d} satisfies

the following condition

ν :=

∞∑
m=1

ν
2/3
m,2 <∞,
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and thus allows us to apply Lemma 5 above. More precisely, using (S.11), we first get

P
(
θ̂d(u, v)− θd(u, v) > η

)
≤ P

(
1

N

N∑
n=1

Zn,d > η/2

)
.

Applying next Lemma 5, for any η ∈ (ηd, 1), we get

P
(
θ̂d(u, v)− θd(u, v) > η

)
≤

4c2
(
ν3 + ν22(Z1,d)

)
Nη2

+ c′2 exp
(
− c2
4ν3

Nη2
)
+ 2 exp

(
− c2
4ν22(Z1,d)

Nη2
)

≤ ad
Nη2

+ b exp
(
−edNη

2
)
,

where ad = 4c2
(
ν3 + ν22(Z1,d)

)
, b = c′2 + 2 and ed = min

(
c2/(4ν

3), c2/(4ν
2
2(Z1,d))

)
. Using (4) (with

L2
d,t = E[{∇dX(t)}2] and ∆d,0 = ∆δ,0 when d < δ; see also the proof of Lemma 1), and the condi-

tion (S.6), we get
θd(u, v) ≥ |u− v|2Hd,tL2

d,t/2 > 0.

We thus get that ηd < θd(u, v), for a sufficiently large λ, values κ ∈ (0, 1) exist such that ηd < κθd(u, v).
We can then consider η = κθd(u, v) in the Nagaev-type inequality and deduce

p+d (u, v;κ)P
(
θ̂d(u, v) > (1 + κ)θd(u, v)

)
≤ ad
Nκ2θ2d(u, v)

+ b exp
(
−edNκ

2θ2d(u, v)
)

≤ 24Hd,t+2ad
Nκ2L4

d,t∆
4Hd,t

+ b exp
(
− ed
24Hd,t+2

Nκ2L4
d,t∆

4Hd,t
)
.

Similar arguments apply for bounding p−d (u, v;κ). The proof of Lemma S.1 is now complete.

In view of the proof of Lemma 1, let us define

βd = 1/2 if d ≤ δ − 2, and βδ−1 = H, (S.12)

L2
d,t := E

[(
∇d+1X(t)

)2] ∈ [ ad+1, ad+1], 1 ≤ d ≤ δ − 1, (S.13)

and

S2
d = 2

√
ad+1

√
ad+2 + ad+2 if d ≤ δ − 2, and S2

δ−1 = 2
√
ad+1

√
L
2
+ S2

δ + L
2
+ S2

δ . (S.14)

Lemma S.2. 1. For any φ ∈ (0, 1) and 0 < ∆ ≤ ∆δ,0 such that

∆2βdS2
d <

L2
d,t log(2)

4
φ, ∀1 ≤ d ≤ δ,

with βd, L
2
d,t and S

2
d in (S.12), (S.13) and (S.14), respectively, then∣∣∣H̃d,t −Hd,t

∣∣∣ < φ/2, ∀1 ≤ d ≤ δ.

2. Let 1 ≤ d ≤ δ, and let H ∈ (0, 1] such that |H − Hd,t| < φ < 1. For any ψ ∈ (0, 1) and
0 < ∆ ≤ ∆δ,0 such that S2

d∆
2βd−2φ < ψ/3, we have∣∣∣∣θd(t1, t3)− Ld,t∆

2Hd,t

∆2H

∣∣∣∣ < ψ/3.

Proof of Lemma S.2. 1. Let 1 ≤ d ≤ δ be a fixed integer. From the proof of Lemma 1 and condition
(4), we can rewrite θd(u, v), with u, v ∈ [t−∆/2, t+∆/2] ⊂ [t−∆δ,0/2, t+∆δ,0/2] as

θd(u, v) = L2
d,t|u− v|2Hd(1 + ρd(u, v)),
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where |ρd(u, v)| ≤ (Sd,t/Ld,t)
2
∆2βd . Since our conditions imply ∆2βdS2

d,t < L2
d,t log(2)/4, we deduce

|ρd(u, v)| < 1/2. Using the fact that x 7→ log(1 + x) is Lipschitz for x ∈ (−1/2,+∞), we get:

|H̃d,t −Hd,t| =
| log(1 + ρd(t1, t3))− log(1 + ρd(t1, t2))|

log(2)

≤ |ρd(t1, t3)|+ |ρd(t1, t2)|
log(2)

≤ 2

log(2)

(
Sd
Ld,t

)2

∆2βd .

We then deduce from the condition on φ that |H̃d,t −Hd,t| < φ/2.
2. By condition (4), if ∆2βd−2φS2

d < ψ/3, we get∣∣∣∣∣θd(t1, t3)− L2
d,t∆

2Hd,t

∆2H

∣∣∣∣∣ < S2
d∆

2βd+2(Hd,t−H) < S2
d∆

2βd−2φ < ψ/3.

Lemma S.3. Assume that the conditions of Proposition 1 hold true. For any d ∈ {1, . . . , δ}, there
exists a universal positive constant b, and positive constants fd and gd depending on dependence measure
such that the following inequality holds:

P
(
|Ĥd,t −Hd,t| > φ

)
≤ fd
Nφ2∆4Hd,t

+ 4b exp
(
−gdNφ

2∆4Hd,t
)
.

Proof of Lemma S.3. According to condition (S.6) and Lemma S.2, we have that |H̃d,t −Hd,t| ≤ φ/2.
It then follows that,

P(|Ĥd,t −Hd,t| > φ) ≤ P
(∣∣∣Ĥd,t − H̃d,t

∣∣∣ > φ/2
)

≤ P

(∣∣∣∣∣log θ̂d(t1, t3)θd(t1, t3)

θd(t1, t2)

θ̂d(t1, t2)

∣∣∣∣∣ > φ log(2)

)

≤ P

(
θ̂d(t1, t3)

θd(t1, t3)

θd(t1, t2)

θ̂d(t1, t2)
> 2−φ

)
+ P

(
θ̂d(t1, t3)

θd(t1, t3)

θd(t1, t2)

θ̂d(t1, t2)
< 2−φ

)
.

By simple algebra and the definition of the functions p+d and p−d introduced in Lemma S.1, we get:

P(|Ĥd,t −Hd,t| > φ) ≤ p+d (t1, t3; 2
φ/2 − 1) + p−d (t1, t3; 1− 2−φ/2)

+ p+d (t1, t2; 2
φ/2 − 1) + p−d (t1, t2; 1− 2−φ/2), (S.15)

provided that ηd(λ) < |2±φ/2 − 1|θd(u, v) < 1 which is guaranteed by condition (S.7) with Cd =
5B−1/2(2

√
ad +

√
B)−1 log(2)/211/2. To see this, first note that for any φ ∈ (0, 1), |2±φ/2 − 1| ≤

φ log(2)/21/2. Thus, by (4) and (S.6), we have

|2±φ/2 − 1|θd(u, v) ≤
(
5 log(2)/25/2

)
φL2

d,t∆
2Hd,t < 1 as ∆ → 0.

Second, (D2) entails that ηd(λ) < 8
(
2
√
ad +

√
B
)
B1/2λ−τ/2. Gathering the two bounds, we obtain

λ−τ/2 <

(
5B−1/2

(
2
√
ad +

√
B
)−1

log(2)/211/2
)
φL2

d,t∆
2Hd,t ,

which is exactly the condition (S.7). Now, with tk = t2 or tk = t3, we have

p+d (t1, tk; 2
φ/2 − 1) ≤ 24Hd,t+2ad

N(2φ/2 − 1)2L4
d,t∆

4Hd,t
+ b exp

(
− ed
24Hd,t+2

N(2φ/2 − 1)2L4
d,t∆

4Hd,t
)
.
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Since log x ≤ x− 1 for any x > 0, we get log(2φ/2) ≤ 2φ/2 − 1. We obtain,

p+d (t1, tk; 2
φ/2 − 1) ≤ 24Hd,t+4ad/ log(2)

2

Nφ2L4
d,t∆

4Hd,t
+ b exp

(
−ed log(2)

2

24Hd,t+4
Nφ2L4

d,t∆
4Hd,t

)
.

Setting fd = 24Hd,t+6ad/(log(2)
2L4

d,t) and gd = edL
4
d,t log(2)

2/24Hd,t+4, we finally get:

p+d (t1, tk; 2
φ/2 − 1) ≤ fd/4

Nφ2∆4Hd,t
+ b exp

(
−gdNφ

2∆4Hd,t
)
.

The same reasoning can be applied to bound the other three terms on the right-hand side of (S.15).
See also the arguments used in the proof of Theorem 1.

Proof of Proposition 1. Note that:

P (|α̂t − αt| > φ) ≤ P
(
|α̂t − αt| > φ, δ̂ = δ

)
+ P

(
δ̂ ̸= δ

)
≤ P

(∣∣∣Ĥδ,t −Hδ,t

∣∣∣ > φ
)
+ P

(
δ̂ < δ

)
+ P(δ̂ > δ)

≤ P
(∣∣∣Ĥδ,t −Hδ,t

∣∣∣ > φ
)
+

δ−1∑
d=0

P
(
Ĥd,t < 1− φ

)
+ P

(
Ĥδ,t > 1− φ

)
≤

δ∑
d=0

P
(∣∣∣Ĥd,t −Hd,t

∣∣∣ > φ
)
+ P

(∣∣∣Ĥδ,t −Hδ,t

∣∣∣ > 1−Hδ,t − φ
)
.

For the last inequality we use the fact that, for d < δ we have Hd,t = 1, while Hδ,t < 1. Since
1−Hδ,t > 2φ for sufficiently large λ, repeatedly applying Lemma S.3, we have

P(|α̂t − αt| > φ(λ)) ≤ fδ
Nφ2∆4Hδ,t

+ 4b exp
(
−4gδNφ

2∆4Hδ,t
)

+

δ∑
d=0

fd
Nφ2∆4Hd,t

+ 4b exp
(
−gdNφ

2∆4Hd,t
)

Setting f = max{f0, . . . , fδ} and g = min{g0, . . . , gδ}, after changing 4b to b, we get:

P(|α̂t − αt| > φ) ≤ (2 + δ)

[
f

Nφ2∆4
+ b exp

(
−gNφ2∆4

)]
.

Proof of Proposition 2. First, we may rewrite L̂2
d,t − L2

d,t as the sum of three terms such that :

∣∣∣L̂2
d,t − L2

d,t

∣∣∣ ≤
∣∣∣θ̂d(t1, t3)− θd(t1, t3)

∣∣∣
∆2Ĥd

+

∣∣∣θd(t1, t3)− L2
d,t∆

2Hd

∣∣∣
∆2Ĥd

+ L2
d,t

∣∣∣1−∆2Hd−2Ĥd
∣∣∣ .

It then follows that,

P
(∣∣∣L̂2

d,t − L2
d,t

∣∣∣ > ψ
)
≤ P

(∣∣∣Ĥd,t −Hd,t

∣∣∣ ≤ φ,
∣∣∣L̂2
d,t − L2

d,t

∣∣∣ > ψ
)
+ P

(∣∣∣Ĥd,t −Hd,t

∣∣∣ > φ
)
.

On the event
∣∣∣Ĥd,t −Hd,t

∣∣∣ ≤ φ, using (S.8) and Lemma S.2, we get

|θd(t1, t3)− L2
d,t∆

2Hd |
∆2Ĥd

≤ ψ/3.
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Furthermore, the function x ∈ [−φ,φ] → ∆2x is Lipschitz. Consequently we get,

L2
d,t|1−∆2Hd−2Ĥd | ≤ ψ/3,

provided
∣∣∣Ĥd,t −Hd,t

∣∣∣ ≤ φ and condition (S.9) holds true. We then deduce that,

P
(
|L̂2
d,t − L2

d,t| > ψ
)
≤ P

(∣∣∣Ĥd,t −Hd,t

∣∣∣ ≤ φ,
|θ̂d(t1, t3)− θd(t1, t3)|

∆2Ĥd,t
> ψ/3

)
+ P

(∣∣∣Ĥd,t −Hd,t

∣∣∣ > φ
)
,

≤ P
(∣∣∣Ĥd,t −Hd,t

∣∣∣ ≤ φ,
∣∣∣θ̂d(t1, t3)− θd(t1, t3)

∣∣∣ > ∆2Hd,t+2φψ/3
)

+ P
(∣∣∣Ĥd,t −Hd,t

∣∣∣ > φ
)
,

≤ P
(∣∣∣θ̂d(t1, t3)− θd(t1, t3)

∣∣∣ > ∆2Hd,t+2φψ/3
)
+ P

(∣∣∣Ĥd,t −Hd,t

∣∣∣ > φ
)
.

The second probability of the right-hand side of the last inequality can be bounded using Lemma S.3
and the first probability using Lemma S.1, provided that ηd(λ) < ∆2Hd,t+2φψ/3 < 1 which is guaran-

teed by condition (S.10) with C̃d = B−1/2(2
√
ad+

√
B)−1/(3× 23). In fact, note that the Assumption

(D2) implies that ηd(λ) ≤ 8
(
2
√
ad +

√
B
)
B1/2λ−τ/2, hence

λ−τ/2 < B−1/2(2
√
ad +

√
B)−1/(3× 23)∆2φψ∆2Hd,t < 1 as ∆ → 0.

Proposition 2 then follows:

P
(∣∣∣L̂2

d,t − L2
d,t

∣∣∣ > ψ
)
≤ cd
Nψ2∆4Hd+4φ

+ b exp
(
−ldNψ

2∆4Hd+4φ
)

+
fd

Nφ2∆4Hd
+ 4b exp

(
−gdNφ

2∆4Hd
)
,

where cd = 9ad and ld = ed/9.

S.3 Proofs for adaptive estimation

In this section we provide proofs for the results in Appendix C.

S.3.1 Technical lemmas

Lemma 7. Assume that X ∈ X (H,L; J) and let X̂n(t, h) be defined as in (17). Assume (H1) to (H6),
(H11) and (H12) hold true. Then :

1. {Bn(t;h)} and {Vn(t;h)} are conditionally independent given {Mn} and {Tn,i} ;

2. {Vn(t;h)} are conditionally independent given {Mn} and {Tn,i} ;

3. EM,T

[
V 2
n (t;h)

]
≤ {1 + o(1)}σ2(t)max1≤i≤Mn

Wn,i(t;h), with o(1) uniform with respect to h ∈
HN ;

4. EM,T

[
B2
n(t;h)

]
≤ L2

th
2Htbn(t;h, 2Ht){1 + o(1)}, with o(1) uniform with respect to h ∈ HN ;

Proof of Lemma 7. By definition, we have

Bn(t;h) =

Mn∑
i=1

Wn,i(t;h){Xn(Tn,i)−Xn(t)} and Vn(t;h) =

Mn∑
i=1

εn,iWn,i(t;h).

1) Direct consequence of the definitions and assumption (H5).

19



2) Direct consequence of the definitions and assumption (H4).

3) By elementary calculations and (H4), and since
∣∣σ2(Tn,i)− σ2(t)

∣∣ ≤ Lσ|Tn,i−t| for some Lσ > 0,
uniformly with respect to h, we have

EM,T

[
V 2
n (t;h)

]
=

Mn∑
i=1

W 2
n,i(t;h)σ

2(Tn,i) ≤ {1 + o(1)}σ2(t) max
1≤i≤Mn

Wn,i(t;h).

4) By Jensen’s inequality,

B2
n(t;h) ≤

Mn∑
i=1

Wn,i(t;h) {Xn(Tn,i)−Xn(t)}2 .

Then condition (4) in (H6) implies

EM,T

[
B2
n(t;h)

]
≤ L2

t

Mn∑
i=1

Wn,i(t;h)|Tn,i − t|2Ht ×
{
1 + h2β0S2

0/L
2
t

}
= L2

th
2Htbn(t;h, 2Ht)×

{
1 + h2β0S2

0/L
2
t

}
.

Moreover, for any t ∈ I and h ∈ HN , by (H12) we get

0 < h2β0S2
0/L

2
t ≤ (maxHN )

2β0 S2
0/L→ 0.

The statement then follows.

Lemma 8. Assume that the assumptions (H1) to (H5), and (H12) to (H14) hold true.

1. For any t ∈ (0, 1) and h ∈ HN such that
∫ t+h
t−h g(u)du ≤ 1/2, we have

1− exp (−Mnp(t;h)) ≤ E[πn(t;h) |Mn] ≤ 1− exp (−2Mnp(t;h)) , ∀1 ≤ n ≤ N.

2. There exists two constants Cµ and Cµ such that for all h ∈ HN ,

Cµ{1 + o(1)} ≤ E[PN (t;h)]

N min(1, λh)
≤ Cµ{1 + o(1)},

and PN (t;h) = E[PN (t;h)]{1 + oP(1)}, with o(1) and oP(1) uniform with respect to h ∈ HN .

3. Moreover if (H16) holds, constants Cγ and Cγ exist such that ∀h ∈ HN ,

Cγ{1 + o(1)} ≤ E[PN,ℓ(s, t;h)]
(N − ℓ)min(1, (λh)2)

≤ Cγ{1 + o(1)},

and PN,ℓ(s, t;h) = E[PN,ℓ(s, t;h)]{1+oP(1)}, with o(1) and oP(1) uniform with respect to h ∈ HN .

Proof of Lemma 8. 1) For simplicity, we omit the subscript n, and write M and π(t;h). Since {Tn,i}
are independent by (H3), we have

E[π(t;h) |M ] = 1− (1− p(t;h))M , with p(t;h) =

∫ t+h

t−h
g(u)du.

We remark that, using the Hölder continuity of g (H14), we obtain p(t;h) = 2hg(t){1 + o(1)} where
o(1) converges to 0 uniformly with respect to h ∈ HN . Thus, for a sufficiently small maxHN , we can
assume that p(t;h) < 1/2, ∀h ∈ HN . Using the following elementary inequality,

− u

1− u
≤ log(1− u) ≤ −u, ∀u ∈ (0, 1),
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we deduce that for any u ∈ (0, 1/2), and for any M ≥ 0

1− exp (−Mu) ≤ 1− (1− u)M < 1− exp (−2Mu) .

Replacing u by p(t;h), the first statement follows.

2) Note that PN (t;h) =
∑N
n=1 πn(t;h) is a sum of N independent Bernoulli random variables, and

E[PN (t;h)] = NE[π1(t;h)]. Assumption (H13) implies that for all u ∈ (0, 1), exp(−cλu) ≤ E(e−uM ) ≤
exp(−cuλ). Then, by 1) above we get,

1− exp(−λh(1 + o(1))2g(t)c) ≤ E[PN (t;h)]

N
≤ 1− exp(−λh(1 + o(1))2g(t)c).

If λh ≥ 1, the following inequality hold by (H14),

{1− exp(−2cgc)}(1 + o(1)) ≤ E[PN (t;h)]

N
≤ 1.

If λh < 1, we remark that if C > 0, 1− e−Cu ≥ (1− eC)u for all u ∈ (0, 1) and that 1 − e−x ≤ x for
all x ∈ R. We deduce by (H14),

{
1− exp

(
−2cgc

)}
λh(1 + o(1)) ≤ E[PN (t;h)]

N
≤ λh 2cgc{1 + o(1)}.

Gathering facts, the double inequality in 2) follows by setting Cµ = 1 − exp
(
−2cgc

)
and Cµ =

max(1, 2cgc). Next, using the left bound of this double inequality and Chernoff’s (see, for instance,
Vershynin, 2018, Section 2.3) exponential bound, for any 0 < η < 1,

P
(∣∣∣∣ PN (t;h)

E[PN (t;h)]
− 1

∣∣∣∣ > η

)
≤ 2 exp

(
−η2E[PN (t;h)]/3

)
≤ 2 exp

(
−Cµη2N min(1, λminHN )/3

)
.

Since HN is a grid of at most (Nλ)c points for some c > 0, we deduce that

P
(

sup
h∈HN

∣∣∣∣ PN (t;h)

E[PN (t;h)]
− 1

∣∣∣∣ > η

)
≤ 2(Nλ)c exp

[
−Cµη2N min(1, λminHN )/3

]
≤ 2 exp

[
−N min(1, λminHN )

(
Cµη

2/3− c log(Nλ)

N min(1, λminHN )

)]
.

Since by Assumption (H12) N min(1, λminHN )/ log(Nλ) → ∞, we deduce that PN (t;h)/E[PN (t;h)]
converges in probability to 1 uniformly over h ∈ HN .

3) Let ⌊x⌋ denote the largest integer smaller than x. Note that, for a fixed ℓ, we can decompose

PN,ℓ(s, t;h) =

N−ℓ∑
n=1

πn(s;h)πn+ℓ(t;h) =

ℓ+1∑
l=1

PN,ℓ,l(s, t;h),

where

PN,ℓ,l(s, t;h) =

⌊(N−ℓ−l)/(ℓ+1)⌋∑
n′=0

πn′(ℓ+1)+l(s;h)πn′(ℓ+1)+ℓ+l(t;h).

Each PN,ℓ,l(s, t;h) is a sum of independent Bernoulli random variables because, by definition and the
condition we imposed, the πn(s;h)’s, 1 ≤ n ≤ N , are independent. Moreover,

E[PN,ℓ,l(s, t;h)] = {⌊(N − ℓ− l)/(ℓ+ 1)⌋+ 1}E[π1(s;h)]E[π1+ℓ(t;h)].

By arguments as used for 2), constants C and C exist such that

C2 ≤ E[PN,ℓ,l(s, t;h)]
{⌊(N − ℓ− l)/(ℓ+ 1)⌋+ 1}min(1, (λh)2)

≤ C
2
, 1 ≤ l ≤ ℓ.

21



By little algebra, summing over the integers l between 1 and ℓ+1, we get the first part of the statement.
For the second part, using Chernoff’s exponential bound (see, for instance, Vershynin, 2018, Section
2.3) and the fact that HN is a grid of up to (Nλ)c points, for each 1 ≤ l ≤ ℓ+ 1, we deduce that

P
(

sup
h∈HN

∣∣∣∣ PN,ℓ,l(s, t;h)E[PN,ℓ(s, t;h)]
− 1

∣∣∣∣ > η

)
≤ 2 exp

[
− ⌊(N − ℓ− l)/(ℓ+ 1)⌋min(1, (λminHN )2)

×
(
Cη2

3
− c log(Nλ)

⌊(N − ℓ− l)/(ℓ+ 1)⌋min(1, (λminHN )2)

)]
Using Assumption (H16) and summing over 1 ≤ l ≤ ℓ + 1, the statement follows by elementary
algebra.

Lemma 9. Let assumptions (H1) to (H7) and (H14) hold true. Then, for any t ∈ I, σ̂2(t) =
σ2(t){1 + oP(1)}.

Proof of Lemma 9. For any t ∈ I,

σ̂2(t)− σ2(t) =
1

N

N∑
n=1

{Zn − EZn}+ {EZn − σ2(t)},

where Zn = {Yn,i(t) − Yn,i(t)+1}2/2. Thus,

P
(
|σ̂2(t)− σ2(t)| > η

)
≤ Q1 +Q2,

where

Q1 = P

(
N∑
n=1

|Zn − EZn| > Nη/2

)
and Q2 = P

(∣∣EZn − σ2
∣∣ > η/2

)
.

Study of Q2. Using the assumptions (H3), (H4) and (H5), we have

0 ≤ EM,TZn − σ2(t) = |EM,TZn − σ2(t)| = EM,T {Xn(Tn,i(t))−Xn(Tn,i(t)+1)}2/2

=
1

2
EM,T

[
{Xn(Tn,i(t))−Xn(Tn,i(t)+1)}2[1A + 1A]

]
≤ 1

2
EM,T

[
{Xn(Tn,i(t))−Xn(Tn,i(t)+1)}21A

]
+ 2 sup

u∈I
E
[
X2(u)

]
P(A),

where A = {
∣∣Tn,i(t) − Tn,i(t)+1

∣∣ ≤ ∆0,0} ∩ {Tn,i(t), Tn,i(t)+1 ∈ J} with J and ∆0,0 the set and the
constant from condition (4) in (H6). Then constants C1 and C2 exist such that

0 ≤ EZn − σ2(t) ≤ C1L
2
tE
[∣∣Tn,i(t) − Tn,i(t)+1

∣∣2Ht]+ C2P(A).

Since the Tn,i’s are independently drawn and admit a density g bounded and bounded away from zero
(H14), it is easy to check that the bound of EZn − σ2(t) tends to zero, provided λ → ∞. See also
(Golovkine et al., 2022, Section F) for the moments of the spacings between the ordered Tn,i.

Study of Q1. By (1),

Yn,i(t) = Xn(Tn,i(t)) + σ2((Tn,i(t))εn,i(t), 1 ≤ n ≤ N.

The infinite sequence {Xn, n ∈ Z} is stationary. Recall that in our setup, Tn,i, 1 ≤ i ≤Mn, 1 ≤ n ≤ N
is a triangular array, withM1, . . . ,MN independent copies ofM which has a distribution which changes
with N , while the Tn,i’s are independent copies of T with a fixed distribution. Thus, for any N ≥ 1,
the finite sequence {ζn = (Tn,i(t), εn,i(t)), 1 ≤ n ≤ N} is i.i.d., see assumptions (H3), (H4) and (H5).
This implies that the finite sequence {Yn,i(t), 1 ≤ n ≤ N} is also stationary. We next complete these
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finite sequences to infinite ones, {ζn, n ∈ Z} and {Yn,i(t), n ∈ Z}, by generating independent Mn from
the same distribution as M1, . . . ,MN , and independent copies (Tn,1, εn,1), . . . , (Tn,Mn , εn,Mn) of (T, ε),
for any n ̸∈ {1, . . . , N}. Using the MA representation of {Xn}, see (6) in Definition 3, we then rewrite
Yn,i(t)

Yn,i(t) = f(ξn, ξn−1, . . .)(Tn,i(t)) + σ2((Tn,i(t))εn,i(t) = g ((ζn, ξn)(ζn−1, ξn−1), . . .) , n ≥ 1,

where {(ζn, ξn), n ∈ Z} is an i.i.d. sequence taking values in a measurable space S̃ = {[0, 1]× R} × S
and g : S̃∞ → C a measurable function. A coupled version of Yn,i(t) is then

Y
(m)
n,i(t) = X(m)

n (Tn,i(t)) + σ2((Tn,i(t))εn,i(t), m ≥ 1,

and we have ∣∣∣Y (m)
n,i(t) − Yn,i(t)

∣∣∣ ≤ ∥X(m)
n −Xn∥∞,

and deduce that {Yn,i(t), n ≥ 1} is L4−m−approximable. The same facts hold true for {Yn,i(t)+1, n ≥
1}. This entails that {Zn}n is L2 −m-approximable, since

|Zn − Z(m)
n | ≤ 2

(
∥Xn∥∞ + ∥X(m)

n ∥∞
)
∥X(m)

n −Xn∥∞.

By Cauchy-Schwarz inequality and Jensen’s inequality, we get

ν2

(
Zn − Z(m)

n

)
≤ 4ν4(∥Xn∥∞)ν4

(
∥X(m)

n −Xn∥∞
)
.

Condition (H7) then implies

υ :=

∞∑
m=1

ν2

(
Zm − Z(m)

m

)2/3
<∞.

Applying Nagaev’s inequality, see Lemma 5, constants c2 and c′2 exist such that

P

(
N∑
n=1

|Zn − EZn| > Nη/2

)
≤ c′2 exp

(
− c2
4υ3

Nη2
)
+

4c2
(
υ3 + ν2(Zn − EZn)2

)
Nη2

+ 2 exp

(
− c2Nη

2

4ν2(Zn − EZn)2

)
.

This shows that Q1 tends to zero. The proof is now complete.

Lemma 10. Assume the assumptions (H1) to (H5), and (H11) to (H14) hold true. For each N ≥ 1,
we have

0 ≤ max
n,i

Wn,i(t;h) ≤ Sn,W (h)min
(
1, (λh)−1

)
, 1 ≤ n ≤ N,

where Sn,W (h) ≥ 1 is a random variable with the mean and the variance bounded by constants which
do not depend on h and n. Moreover, the variables {Sn,W (h), 1 ≤ n ≤ N} are independent.

Proof of Lemma 10. By construction, the weights of the NW estimator with a non-negative kernel
satisfy

0 ≤ min
1≤n≤N

min
1≤i≤Mn

Wn,i(t;h) ≤ max
1≤n≤N

max
1≤i≤Mn

Wn,i(t;h) ≤ 1, ∀t ∈ I, h ∈ HN .

It thus remains to study more carefully the case where λh ≥ C for some constant C > 0. Using the
fact that the kernel is bounded and bounded away from zero on [−1, 1], for each 1 ≤ n ≤ N , we have

max
1≤i≤Mn

Wn,i(t;h) ≤
∥K∥∞
τ

1{S(Mn, t, h) > 0}
S(Mn, t, h)

,

23



where

τ = inf
|t|≤1

K(t) and S(Mn, t, h) =

Mn∑
k=1

1{|Tn,k − t| ≤ h} ≤ cλ.

Note that S(Mn, t, h) is an integer-valued variable, non-decreasing as function of h. Conditionally
given Mi, the variable S(Mn, t, h) is a Binomial variable with parameters Mn and

P(|Tn,i − t| ≤ h) =

∫ (t+h)∧1

(t−h)∨1

g(u)du ≥ h× inf
u∈I

g(u) ≥ h× cg.

Let us now recall a result of Chao and Strawderman (1972) : if S is a non-degenerate Binomial random
variable B(n, p), then

E[(1 + S)−1] =
1− qn+1

(n+ 1)p
, where q = 1− p. (S.16)

In our context, we have S = S(Mn, t, h), n = Mn and p = P(|Tn,i − t| ≤ h). From (S.16) and
Cauchy-Schwarz inequality, we deduce

1

1 + np
≤ E[(1 + S)−1] ≤ 1

(n+ 1)p
. (S.17)

On the other hand, we can write

E
[

1

1 + S

]
= P(S = 0) + E

[
1{S ≥ 1}
S(1 + 1/S)

]
≥ P(S = 0) +

1

2
E
[
1{S > 0}

S

]
,

and

E
[

1

1 + S

]
= P(S = 0) + E

[
1{S ≥ 1}
S(1 + 1/S)

]
≤ P(S = 0) + E

[
1{S > 0}

S

]
.

Using (S.17) and the fact that, in our context, np and λh have the same rate, we deduce that constants
c1, c2 > 0 exist such that

c1
np

≤ E
[
1{S > 0}

S

]
≤ c2
np
,

provided λh ≥ C and the constant C is sufficiently large. Indeed, the upper bound is obvious. For the
lower bound, let us consider C > {cgc(e− 1)}−1. We then have

E
[
1{S > 0}

S

]
≥ E

[
1

1 + S

]
− P(S = 0)

=
1

1 + np
− (1− p)n ≥ 1

1 + np
− exp(−np) using log(1− x) ≤ −x, ∀x < 1

≥ 1

1 + np
− e−1

np
using exp(−x) ≤ e−1

x
∀x > 0

≥ c1
np
,

for some constant c2. Replacing S by S(Mn, t, h), and using the independence between M and T , we
get

c1,W
λh

≤ E
[
1{S(Mn, t, h) > 0}

S(Mn, t, h)

]
≤ c2,W

λh
,

where c1,W , c2,W are positive constant, depending only on C, cg, cg, c, c. Similarly, it can be shown
that a constant c′W exists, depending only on C, cg and c, such that

E
[
1{S(Mn, t, h) > 0}

S2(Mn, t, h)

]
≤ c′W

(λh)2
.

The result then follows by defining

Sn,W (h) = max
{
1, (λh)(∥K∥∞/τ)1{S(Mn, t, h) > 0}S−1(Mn, t, h)

}
,

because under our assumptions, the {Sn,W (h), 1 ≤ n ≤ N} are clearly independent and we showed
that their mean and variance are uniformly bounded with respect to h ∈ HN .
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Lemma 11. Assume that the assumptions (H1) to (H5), (H7) for p ≥ 8 and (H12) hold. For each
h ∈ HN , {πn(h), n ≥ 1} be a sequence of i.i.d. Bernoulli random variables which is independent of
{Xn, n ∈ Z}. Then, for any t ∈ I,

1

N

N∑
n=1

πn(h)X
2
n(t) = E

[
π1(h)X

2
1 (t)

]
{1 + oP(1)} uniformly with respect to h ∈ HN .

Proof of Lemma 11. First we decompose the following sum in two terms

1

N

N∑
n=1

πn(h)X
2
n(t) = Z1,N (h; t) + Z2,N (h; t),

where

Z1,N (h; t) =
1

N

N∑
n=1

{πn(h)− E [πn(h)]}X2
n(t) and Z2,N (h; t) =

1

N

N∑
n=1

E [πn(h)]X
2
n(t).

Our assumption clearly entails Z2,N (h; t) = E [πn(h)]E
[
X2
n(t)

]
{1 + oP(1)}, uniformly with respect to

h ∈ HN . To study the uniform convergence of Z1,N (h; t), we first condition on the realization of the
sequence {Xn, n ≥ 1}, derive an exponential concentration bound for the weighted sequence of πn(h).
Finally, we integrate this bound on a suitable set of realizations of {Xn, n ≥ 1} with high probability,
and provide a bound for the complement of this suitable set.

For the exponential concentration bound for the weighted sequence of πn(h), we use the following
general Hoeffding’s inequality, a suitable result for our study (see Vershynin, 2018, Theorem 2.6.3). Let
{Un, n ≥ 1} independent copies of a standardized, sub-gaussian variable U . Let a = (a1, . . . , aN ) ∈ RN
be a non-random vector. We then have

P

(∣∣∣∣∣
N∑
n=1

anUn

∣∣∣∣∣ ≥ v

)
≤ 2 exp

[
− Cv2

K2∥a∥22

]
, ∀v > 0, (S.18)

where C > 0 is an absolute constant, and K = inf{u > 0 : E(exp(U2/u2)) ≤ 2}. When Un =
πn(h)− E [πn(h)], we have

E(exp(U2/u2)) = exp(E [πn(h)]
2
/u2)× {1− E [πn(h)]}+ exp({1− E [πn(h)]}2/u2)× E [πn(h)]

≥ 1 + {exp({1− E [πn(h)]}2/u2)− 1} × E [πn(h)] ,

and thus deduce

K ≤ 1− E [πn(h)]√
log (1 + 1/E [πn(h)])

≤ 1√
log (2)

.

We apply (S.18) with Un = πn(h)−E [πn(h)] for each h ∈ HN . Since {πn(h)} and {Xn} are independent
sequences, and using Boole’s (union bound) and (H12) inequality, we deduce

P

(
sup
h∈HN

∣∣∣∣∣
N∑
n=1

{πn(h)− E [πn(h)]}X2
n(t)

∣∣∣∣∣ ≥ Nv
∣∣∣ (X2

1 (t), . . . , X
2
N (t)) = a

)

≤ 2 exp

[
c log(Nλ)− CN2v2

K2∥a∥22

]
.

We next define the eventA = {(X2
1 (t), . . . , X

2
N (t)), ∥(X2

1 (t), . . . , X
2
N (t))∥22 ≤ Nc}, for some real number

Nc such that c > E[X4
1 (t)]. Then, by (H7) and the Nagaev inequality stated in Lemma 5 we have

P
(
A
)
= P

(
N∑
n=1

{X4
n(t)− E[X4

1 (t)]} > N(c− E[X4
1 (t)])

)
≤
c2
(
ϑ3 + ∥X4

1 (t)− E[X4
1 (t)]∥22

)
N(c− E[X4

1 (t)])
2

+ c′2 exp

(
−c2N(c− E[X4

1 (t)])
2

ϑ3

)
+ 2 exp

(
− c2N(c− E[X4

1 (t)])
2

∥X4
1 (t)− E[X4

1 (t)]∥22

)
,
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where c2 and c′2 are two positives constants and ϑ corresponds the dependency coefficient. Thus
gathering facts, we obtain

P

(
sup
h∈HN

∣∣∣∣∣
N∑
n=1

{πn(h)− E [πn(h)]}X2
n(t)

∣∣∣∣∣ ≥ Nv

)

≤ P

(
sup
h∈HN

∣∣∣∣∣
N∑
n=1

{πn(h)− E [πn(h)]}X2
n(t)

∣∣∣∣∣ ≥ Nv
∣∣∣ ∥X2

1 (t), . . . , X
2
N (t)∥22 ≤ Nc

)
P (A) + P

(
A
)

≤ 2 exp

[
c log(Nλ)− C log(2)Nv2

c

]
+
c2
(
ϑ3 + ∥X4

1 (t)− E[X4
1 (t)]∥22

)
N(c− E[X4

1 (t)])
2

+ c′2 exp

(
−c2N(c− E[X4

1 (t)])
2

ϑ3

)
+ 2 exp

(
− c2N(c− E[X4

1 (t)])
2

∥X4
1 (t)− E[X4

1 (t)]∥22

)
.

The proof of Lemma 11 is now complete.

S.3.2 Mean estimator: risk bounds

Lemma 12. Under the assumptions (H1) to (H7), (H11) and (H12), we have

EM,T

[
{µ̂N (t;h)− µ(t)}2

]
≤ 2Rµ(t;h){1 + o(1)},

with o(1) uniform with respect to h ∈ HN and

Rµ(t;h) = L2
th

2HtB(t;h, 2Ht) + σ2(t)Vµ(t;h) + Dµ(t;h)/PN (t;h).

Proof of Lemma 12. Let µ̃N (t;h) be the infeasible mean estimator

µ̃N (t;h) =
1

PN (t;h)

N∑
n=1

πn(t;h)Xn(t).

Then
EM,T

[
{µ̂N (t;h)− µ(t)}2

]
≤ 2G1(t;h) + 2G2(t;h)

where

G1(t;h) = EM,T

[
{µ̂N (t;h)− µ̃N (t;h)}2

]
and G2(t;h) = EM,T

[
{µ̃N (t;h)− µ(t)}2

]
.

Bound for G1. We rewrite

µ̂N (t;h)− µ̃N (t;h) =
1

PN (t;h)

N∑
n=1

πn(t;h)Bn(t;h) +
1

PN (t;h)

N∑
n=1

πn(t;h)Vn(t;h).

Using (C.1), Cauchy-Schwarz inequality, the fact that πn = π2
n and Lemma 7, we have

G1(t;h) ≤
1

PN (t;h)

N∑
n=1

πn(t;h)EM,TB
2
n(t;h) +

1

P 2
N (t;h)

N∑
n=1

πn(t;h)EM,TV
2
n (t;h)

≤ {1 + o(1)}
{
L2
th

2HtB(t;h, 2Ht) + σ2(t)Vµ(t;h)
}
,

with o(1) uniform with respect to h ∈ HN .

Bound for G2. Let us first note that

PN (t;h)G2(t;h) = E
[
{X0(t)− µ(t)}2

]
+ 2

N−1∑
ℓ=1

E [{X0(t)− µ(t)}{Xℓ(t)− µ(t)}]

{
N−ℓ∑
i=1

πi(t;h)πi+ℓ(t;h)

PN (t;h)

}
=: Dµ(t;h).
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Now we show that Dµ(t;h) is finite under the L4
C −m−approximation. After completing the sequence

{Xℓ(t), ℓ ∈ Z}, we first have that Dµ(t;h) is bounded. Indeed, taking absolute values and using the fact
that the autocovariance function is absolutely summable (see Hörmann and Kokoszka, 2010, Lemma
4.1), we get

Dµ(t;h) ≤ E
[
{X0(t)− µ(t)}2

]
+ 2

∑
ℓ≥1

|E [{X0(t)− µ(t)}{Xℓ(t)− µ(t)}]| <∞.

Second, the process {Xℓ, ℓ ∈ Z} is L4
C −m−approximable and the L4

C − ℓ−approximation of Xℓ is X
(ℓ)
ℓ .

It is easy to show that for each ℓ ≥ 1, X
(ℓ)
ℓ is independent of X0, see condition 3) in Definition 3.

Therefore, we get

E [{X0(t)− µ(t)}{Xℓ(t)− µ(t)}] = E
[
(X0(t)− µ(t))

(
Xℓ(t)−X

(ℓ)
ℓ (t)

)]
.

Then, by Cauchy-Schwartz inequality and by (H7), we get

Dµ(t;h) ≤ ν2 (X0(t)− µ(t))

ν2 (X0(t)− µ(t)) + 2
∑
ℓ≥1

ν2

(
Xℓ(t)−X

(ℓ)
ℓ (t)

) ≤ ∞.

This conclude the proof.

Lemma 13. Assume the assumptions (H1) to (H7), (H12), (H14), (H15) hold true. Let

R̂µ(t;h) = L̂2
th

2ĤtB(t;h, 2Ĥt) + σ̂2(t)Vµ(t;h) + Dµ(t;h)/PN (t;h).

Then

sup
h∈HN

∣∣∣∣∣ R̂µ(t;h)Rµ(t;h)
− 1

∣∣∣∣∣ = oP(1).

Proof of Lemma 13. Lemma 9 states that σ̂2(t) = σ2(t){1 + oP(1)}, for all t ∈ I. Moreover, σ̂2(t)

does not depend on h. Since by (H15) L̂t concentrates to Lt > 0, it thus suffices to show that

h2Ĥt = h2Ht{1 + oP(1)} uniformly over the range HN . For any ϵ > 0, we can write

P
(

sup
h∈HN

∣∣∣h2(Ĥt−Ht) − 1
∣∣∣ > ϵ

)
= Q3 +Q4,

where

Q3 = P
(

sup
h∈HN

∣∣∣h2(Ĥt−Ht) − 1
∣∣∣ > ϵ, |Ĥt −Ht| ≤ φ

)
,

Q4 = P
(

sup
h∈HN

∣∣∣h2(Ĥt−Ht) − 1
∣∣∣ > ϵ, |Ĥt −Ht| > φ

)
.

Without loss of generality we consider 0 < h < 1, and we define the function x→ g(x) = h2x which is

defined and continuously differentiable on R. Then if |Ĥt −Ht| ≤ φ, we get,∣∣∣h2(Ĥt−Ht) − 1
∣∣∣ ≤ 2| log h|h−2φ|Ĥt −Ht|.

and then,{
sup
h∈HN

∣∣∣h2(Ĥt−Ht) − 1
∣∣∣ > ϵ, |Ĥt −Ht| ≤ φ

}
⊆
{
(minHN )−2φ

∣∣log ((minHN )−2φ
)∣∣ > ϵ

}
.

Choosing φ(λ) = Cφ (log λ)
−2

for some constant Cφ > 0, thanks to Assumption (H12), which implies
log(minHN )/ log2(λ) → 0, we have

(minHN )−2φ = exp

{
−2Cφ

log(minHN )

log2(λ)

}
→ 1.

Since the continuous function x 7→ x log(x), x > 0, vanishes at x = 1, we deduce that Q3 = 0 for
sufficiently large values of λ. On the other hand, (H15) guarantees Q4 → 0.
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S.3.3 Covariance estimator: risk bound

Lemma 14. Under the assumptions (H1) to (H6), (H7) for p ≥ 8, (H11) to (H14), and (H16) we
have

EM,T

[
{γ̂N,ℓ(s, t;h)− γℓ(s, t)}2

]
≤ 2Rγ(s, t;h){1 + oP(1)},

with oP(1) uniform with respect to h ∈ HN and

Rγ(s, t;h) = 3ν22 (X1+ℓ(t))L
2
sh

2HsB(s|t;h, 2Hs, 0) + 3ν22 (X1(s))L
2
th

2HtB(t|s;h, 2Ht, ℓ)

+ 3
{
σ2(s)ν22(X1+ℓ(t))Vγ,1(s, t;h) + σ2(t)ν22(X1(s))Vγ,2(s, t;h)

}
+ 3σ2(s)σ2(t)Vγ(s, t;h)

+ D(s, t;h)/PN,ℓ(s, t;h).

Proof of Lemma 14. Recall that

B(t|s;h, α, ℓ) =
N−ℓ∑
n=1

πn(s;h)πn+ℓ(t;h)

PN,ℓ(s, t;h)
bn+ℓ(t;h, α) with bn(t;h, α) =

Mn∑
i=1

∣∣∣∣Tn,i − t

h

∣∣∣∣αWn,i(t;h).

Recall that g ⊗ f(s, t) := g(s)f(t). Let γ̃N,ℓ(s, t;h) be the weighted mean of the unobserved curves
Xn ⊗Xn+ℓ, n = 1 . . . N , i.e.,

γ̃N,ℓ(s, t;h) =
1

PN,ℓ(s, t;h)

N−ℓ∑
n=1

πn(s;h)πn+ℓ(t;h)Xn(s)Xn+ℓ(t).

The quadratic risk of γ̂N,ℓ(s, t;h) is then bounded by two terms :

EM,T

[
{γ̂N,ℓ(s, t;h)− γℓ(s, t)}2

]
≤ 2G1(s, t;h) + 2G2(s, t;h),

where

G1(s, t;h) = EM,T

[
{γ̂N,ℓ(s, t;h)− γ̃N,ℓ(s, t;h)}2

]
, G2(s, t;h) = EM,T

[
{γ̃N,ℓ(s, t;h)− γℓ(s, t)}2

]
.

We next derive bounds for G1 and G2, respectively.
Bound for G1. We decompose γ̂ℓ − γ̃ℓ as γ̂N,ℓ(s, t;h)− γ̃N,ℓ(s, t;h) = a+ b+ c, where

a =
1

PN,ℓ(s, t;h)

N−ℓ∑
n=1

πn(s;h)πn+ℓ(t;h)Xn ⊗ (Bn+ℓ + Vn+ℓ)(s; (t;h)),

b =
1

PN,ℓ(s, t;h)

N−ℓ∑
n=1

πn(s;h)πn+ℓ(t;h)(Bn + Vn)⊗Xn+ℓ((s;h); t),

c =
1

PN,ℓ(s, t;h)

N−ℓ∑
n=1

πn(s;h)πn+ℓ(t;h)(Bn + Vn)⊗ (Bn+ℓ + Vn+ℓ)((s;h); (t;h)).

Since (a+ b+ c)2 ≤ 3(a2 + b2 + c2), it is sufficient to control the expectations of a2, b2 and c2. Using
Lemma 7-(1) and (2), we have

EM,T

(
a2
)
= EM,T

(
1

PN,ℓ(s, t;h)

N−ℓ∑
i=1

πi(s;h)πi+ℓ(t;h)Xi(s)Bi+ℓ(t;h)

)2

+
1

P 2
N,ℓ(s, t;h)

N−ℓ∑
i=1

π2
i (s;h)π

2
i+ℓ(t;h)EX2

i (s)EM,TV
2
i+ℓ(t;h),

EM,T

(
b2
)
= EM,T

(
1

PN,ℓ(s, t;h)

N−ℓ∑
i=1

πi(s;h)πi+ℓ(t;h)Bi(s;h)Xi+ℓ(t)

)2

+
1

P 2
N,ℓ(s, t;h)

N−ℓ∑
i=1

π2
i (s;h)π

2
i+ℓ(t;h)EM,TV

2
i (s;h)EX2

i+ℓ(t).
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By Cauchy-Schwartz inequality for sums we get,(
N−ℓ∑
i=1

πi(s;h)πi+ℓ(t;h)Xi(s)Bi+ℓ(t;h)

)2

≤

(
N−ℓ∑
i=1

πi(s;h)πi+ℓ(t;h)X
2
i (s)

)(
N−ℓ∑
i=1

πi(s;h)πi+ℓ(t;h)B
2
i+ℓ(t;h)

)
.

Let pi(h) = πi(s;h)πi+ℓ(t;h). We apply again the idea used in the proof of Lemma 8-(3), that we

decompose
∑N−ℓ
i=1 pi(h)X

2
i (s) in ℓ+ 1 sub-sums such that in each sub-sum the pi(h) are independent.

Applying next Lemma 11 to each sub-sum separately and gathering the facts, we deduce

N−ℓ∑
i=1

pi(h)X
2
i (s) = (N−ℓ)E

[
π1(s;h)π1+ℓ(t;h)X

2
1 (s)

]
{1+oP(1)} = E [PN,ℓ(s, t;h)]E

[
X1(s)

2
]
{1+oP(1)},

and the oP(1) is uniform with respect to h ∈ HN . From this and Lemma 8-(3), we next get(
1

PN,ℓ(s, t;h)

N−ℓ∑
i=1

πi(s;h)πi+ℓ(t;h)Xi(s)Bi+ℓ(t;h)

)2

≤
E [PN,ℓ(s, t;h)]E

[
X2

1 (s)
]
{1 + oP(1)}

P 2
N,ℓ(s, t;h)

N−ℓ∑
i=1

πi(s;h)πi+ℓ(t;h)B
2
i+ℓ(t;h)

= {1 + oP(1)}
E[X2

1 (s)]

PN,ℓ(s, t;h)

N−ℓ∑
i=1

πi(s;h)πi+ℓ(t;h)B
2
i+ℓ(t;h),

uniformly with respect to h ∈ HN . We thus have the bounds

EM,T

(
a2
)
≤ {1 + oP(1)}ν22(X1(s))

PN,ℓ(s, t;h)

N−ℓ∑
i=1

πi(s;h)πi+ℓ(t;h)EM,TB
2
i+ℓ(t;h)

+
1

P 2
N,ℓ(s, t;h)

N−ℓ∑
i=1

πi(s;h)πi+ℓ(t;h)EXi(s)
2EM,TV

2
i+ℓ(t;h),

EM,T

(
b2
)
≤ {1 + oP(1)}ν22(X1+ℓ(t))

PN,ℓ(s, t;h)

N−ℓ∑
i=1

πi(s;h)πi+ℓ(t;h)EM,TB
2
i (s;h)

+
1

PN,ℓ(s, t;h)2

N−ℓ∑
i=1

πi(s;h)πi+ℓ(t;h)EM,TV
2
i (s;h)EX2

i+ℓ(t).

Finally, by Lemma 7-(3) and (4),

EM,T

(
a2
)
≤ {1 + oP(1)}L2

th
2Htν22(X1(s))

PN,ℓ(s, t;h)

N−ℓ∑
i=1

πi(s;h)πi+ℓ(t;h)bi+ℓ(t, h, 2Ht)

+
{1 + o(1)}σ2(t)ν22(X1(s))

PN,ℓ(s, t;h)2

N−ℓ∑
i=1

πi(s;h)πi+ℓ(t;h) max
1≤k≤Mi+ℓ

|Wi+ℓ,k(t;h)|

= {1 + oP(1)}
[
ν2 (X1(s))

2
L2
th

2HtB(t|s;h, 2Ht, ℓ) + σ2(t)ν22(X1(s))Vγ,2(s, t;h)
]
,

EM,T

(
b2
)
≤ {1 + oP(1)}L2

sh
2Hsν22(X1+ℓ(t))

PN,ℓ(s, t;h)

N−ℓ∑
i=1

πi(s;h)πi+ℓ(t;h)bi(s, h, 2Hs)

+
{1 + o(1)}σ2(s)ν22(X1+ℓ(t))

P 2
N,ℓ(s, t;h)

N−ℓ∑
i=1

πi(s;h)πi+ℓ(t;h)ci(s;h) max
1≤k≤Mi

|Wi,k(s;h)|

= {1 + oP(1)}
[
ν22 (X1+ℓ(t))L

2
sh

2HsB(s|t;h, 2Hs, 0) + σ2(s)ν22(X1+ℓ(t))Vγ,1(s, t;h)
]
,
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and the oP(1) factors are uniform with respect to h ∈ HN .
To derive a bound for EM,T

[
c2
]
, we decompose this expectation as follows :

EM,T

(
c2
)
= EM,T

(
1

PN,ℓ(s, t;h)

N−ℓ∑
i=1

πi(s;h)πi+ℓ(t;h)Bi(s;h)Bi+ℓ(t;h)

)2

(S.19)

+
1

P 2
N,ℓ(s, t;h)

N−ℓ∑
i=1

π2
i (s;h)π

2
i+ℓ(t;h)EM,TV

2
i (s;h)EM,TV

2
i+ℓ(t;h) (S.20)

+
1

P 2
N,ℓ(s, t;h)

N−ℓ∑
i=1

π2
i (s;h)π

2
i+ℓ(t;h)EM,TB

2
i (s;h)EM,TV

2
i+ℓ(t;h) (S.21)

+
1

P 2
N,ℓ(s, t;h)

N−ℓ∑
i=1

π2
i (s;h)π

2
i+ℓ(t;h)EM,TV

2
i (s;h)EM,TB

2
i+ℓ(t;h) (S.22)

+
2

P 2
N,ℓ(s, t;h)

N−2ℓ∑
i=1

EM,T (πiπi+ℓBiVi+ℓ)⊗ (πi+ℓπi+2ℓBi+2ℓVi+ℓ)((s;h); (t;h)). (S.23)

Lemma 7 ensures that the sum of the terms (S.21), (S.22) and (S.23) are negligible compared to
EM,T (a

2 + b2), uniformly with respect to h ∈ HN .
Applying again Lemma 7, the term (S.20) is bounded by,

(S.20) ≤ {1 + o(1)}σ2(s)σ2(t)Vγ(s, t;h).

Finally, for the term (S.19), we first note that by Jensen’s inequality and the fact that x2y2 ≤
(x4 + y4)/2,

(S.19) ≤ 1

PN,ℓ(s, t;h)

N−ℓ∑
i=1

πi(s;h)πi+ℓ(t;h)EM,T

[
B2
i (s;h)B

2
i+ℓ(t;h)

]
≤ 1

2PN,ℓ(s, t;h)

N−ℓ∑
i=1

πi(s;h)πi+ℓ(t;h)
{
EM,T [B

4
i (s;h)] + EM,T [B

4
i+ℓ(t;h)]

}
.

To bound the 4th order moment of the bias term, we use condition (5), that is a constant C > 0 exists
such that

E(X(u)−X(v))4 ≤ C
[
E(X(u)−X(v))2

]2
, ∀u, v ∈ I.

More precisely, by Jensen’s inequality we have

B4
n(t;h) ≤

Mn∑
i=1

Wn,i(t;h) {Xn(Tn,i)−Xn(t)}4 .

Taking expectation both sides, and applying conditions (5) and (4) we can write

EM,T

[
B4
n(t;h)

]
≤ C

Mn∑
i=1

Wn,i(t;h)E2
M,T

[
{Xn(Tn,i)−Xn(t)}2

]
≤ CL4

t

Mn∑
i=1

Wn,i(t;h)|Tn,i − t|4Ht ×
{
1 + h2β0S2

0/L
2
t

}2
= CL4

th
4Htbn(t;h, 4Ht)×

{
1 + h2β0S2

0/L
2
t

}2
.

We deduce

(S.19) ≤ Cmax(L4
t , L

4
s)h

4min(Ht,Hs) {B(s|t;h, 4Hs, 0) + B(t|s;h, 4Ht, ℓ)} × {1 + o(1)},

and the o(1) factor is uniform with respect to h ∈ HN . This ensures that the term (S.19) is also
negligible in comparison of EM,T (a

2 + b2) uniformly with respect to h ∈ HN .
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Putting the three bounds together, we get

G1(s, t;h)/3 ≤ ν22 (X1+ℓ(t))L
2
sh

2HsB(s|t;h, 2Hs, 0) + ν22 (X1(s))L
2
th

2HtB(t|s;h, 2Ht, ℓ)

+ ν22(X1+ℓ(t))σ
2(s)Vγ,1(s, t;h) + ν22(X1(s))σ

2(t)Vγ,2(s, t;h)
+ σ2(s)σ2(t)Vγ(s, t;h) + uniformly negligible terms.

Bound for G2. For each k ∈ {1, . . . , N − ℓ− 1}, we define the positive real number pk(s, t;h) ∈
[0, 1],

pk(s, t;h) =

N−k−ℓ∑
i=1

πi(s;h)πi+k(s;h)πi+ℓ(t;h)πi+ℓ+k(t;h)

PN,ℓ(s, t;h)
≤ 1.

Then we rewrite G2 as,

PN,ℓ(s, t;h)G2(s, t;h) = E(X0 ⊗Xℓ − γℓ)
2(s, t)

+ 2

N−ℓ−1∑
k=1

pk(s, t;h)E(X0 ⊗Xℓ − γℓ)(Xk ⊗Xk+ℓ − γℓ)(s, t) =: D(s, t;h).

Now we show that D(s, t;h) is finite under the L4
C − m−approximation. First, if we complete the

sequence {Xk(s)Xk+ℓ(t), k ∈ Z}, D(s, t;h) can be bounded by the convergent series of absolute values
of the terms in the long-run variance of the time series {Xk(s)Xk+ℓ(t), k ∈ Z}. More precisely,

D(s, t, h) ≤ ν22((X0 ⊗Xℓ − γℓ)(s, t)) + 2
∑
k≥1

|E(X0 ⊗Xℓ − γℓ)(Xk ⊗Xk+ℓ − γℓ)(s, t)| (S.24)

Moreover, according to Lemma 2, the process {Xk ⊗Xk+ℓ, k ∈ Z} is L2
C −m−approximable, and the

L2
C − (k − ℓ)−approximation of Xk ⊗ Xk+ℓ is X

(k−ℓ)
k ⊗ X

(k)
k+ℓ. It is easy to show that the variables

X0 ⊗Xℓ and X
(k−ℓ)
k ⊗X

(k)
k+ℓ are independent. Therefore, we get

|E(X0 ⊗Xℓ − γℓ)(Xk ⊗Xk+ℓ − γℓ)(s, t)| =
∣∣∣E(X0 ⊗Xℓ − γℓ)

(
Xk ⊗Xk+ℓ −X

(k−ℓ)
k ⊗X

(k)
k+ℓ

)
(s, t)

∣∣∣
≤ ν2((X0 ⊗Xℓ − γℓ)(s, t))ν2

((
Xk ⊗Xk+ℓ −X

(k−ℓ)
k ⊗X

(k)
k+ℓ

)
(s, t)

)
.

We next use this in (S.24) to get

D(s, t;h) ≤ ν22((X0 ⊗Xℓ − γℓ)(s, t))

+ 2ν2((X0 ⊗Xℓ − γℓ)(s, t))

N−ℓ−1∑
k=1

ν2

((
Xk ⊗Xk+ℓ −X

(k−ℓ)
k ⊗X

(k)
k+ℓ

)
(s, t)

)
≤ ∞.

This concludes the proof.

S.4 Details on numerical study

In this section we give more details on the simulation setting of the Section 5 and report the results of
the FTS Model 1 and FTS Model 3 simulation setups.

S.4.1 Details on some quantities used in the simulations

Simple estimators of Σ(t) and Sµ(t) using the R = 400 replications of the generated data from the
FTS Model 2 (or FTS Model 3) are

Σ̂(t) =
1

R

R∑
r=1

Σ̂r,N (t) and Ŝµ(t) =
1

R

R∑
r=1

Ŝµ,r,N (t), (S.25)
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where Σ̂r,N (t) and Ŝµ,r,N (t) are the r−th replication of

Σ̂N (t) =
σ̂2(t)

PN (t;hN )

N∑
n=1

πn(t;hN )

{
Mn∑
i=1

W 2
n,i(t;hN )

}
,

and Ŝµ,N (t) =
1√

PN (t;hN )

N∑
n=1

πn(t;hN ){Xn(t;hN )− µ(t)},

respectively.
The approximation γ̃1(s, t) of γ1(s, t) = E[Xn(s)Xn+1(t)] in Figure 1 was obtained as the lag−1

empirical autocovariance function calculated from a very large sample generated from FTS Model 2
with µ ≡ 0. More precisely, we generate Rγ = 30 replications of the functional time series {Xn, n =
1, . . . , N} with a large N = 5000 and a burn-in period of 500 curves to remove the initialization effect.
In the simulation framework it is then possible to accurately approximate γ1(s, t) by

γ̃1(s, t) =
1

Rγ

Rγ∑
r=1

{
1

N − 1

N−1∑
n=1

Xr,n(s)Xr,n+1(t)

}
∀(s, t) ∈ G×G,

where G is a fine grid of design points, and Xr,n denotes the r-th replication of the curve Xn.

S.4.2 Simulation setting : FTS Model 3

The FTS Model 3 setup is based on the Individual Household Electricity Consumption dataset from the
UC Irvine Machine Learning Repository (Hebrail and Berard, 2012). It contains various measurements
of electricity consumption in a household near Paris, with a sampling rate of one minute from December
2006 to November 2010. The data of interest here are the daily voltages curves, considering only the
days without missing values in the measurements, see Figure S.1. The extracted dataset contains 1358
voltage curves with a uniform common design of 1440 points, normalized so that I = (0, 1].

We use this real dataset to build a data generation setup and simulate functional time series with
patterns similar to the voltage curves. We use the FAR(1) equation

Xn(u) = µ(u) +

∫ 1

0

ψ(u, s)(Xn−1(s)− µ(s))ds+ Ltξn(u), (S.26)

with the mean function and the kernel of the autoregressive operator estimated from the real curves.
The Fourier expansion was used to estimate the mean and kernel functions. More precisely, we consider

µ(t) = β0 +

10∑
k=1

βkζk(t), t ∈ (0, 1], (S.27)

ψ(s, t) =

4∑
k=0

4∑
l=0

θk,lζk(s)ζl(t), s, t ∈ (0, 1], (S.28)

where {ζk, k ≥ 0} = {1,
√
2 cos(2πt),

√
2 sin(2πt),

√
2 cos(4πt),

√
2 sin(4πt), ...} is the Fourier orthonor-

mal basis on the unit interval. The β and θ coefficients are obtained by LASSO regression using the R
package glmnet (Friedman et al., 2010). For the mean function, the coefficients β are estimated using
the 1440 values of the empirical mean of the 1358 curves and t on the regular grid. Similarly, for the
integral operator kernel function ψ(·, ·), the empirical covariance and lag-1 autocovariance functions are
used to estimate the θ coefficients using a representation that we explain below; see (S.29). Figure S.1
shows the estimates of the mean function and Figure S.2 shows the level plot of the kernel function
ψ(·, ·).

We now explain how we derive the representation used to build an estimate of the integral operator
kernel function ψ(·, ·). Let t1, . . . , t1440 be the common design points for this data set. For all ∀ s, t ∈
(0, 1] and ℓ ≥ 0, let

Cℓ(s, t) = E{(Xn(s)− µ(s))(Xn+ℓ(t)− µ(t))},
denote the lag-ℓ autocovariance function of {Xn}. By Fubini’s Theorem and (S.26), we get

C1(s, t) =

∫ 1

0

ψ(t, u)C0(s, u)du.
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Figure S.1: Curves and mean functions of the daily voltage curves with no missing. Right: The raw
daily voltage curves. Middle: Empirical mean function of the daily voltage curves. Right: Smooth
mean function of the daily voltage curves obtained from the model (S.27).

Figure S.2: Level plots of covariance and autocovariance functions of the daily voltage curves with
no missing values and the estimated FAR kernel function. Left: Empirical covariance. Middle:
Empirical lag-1 autocovariance. Right: Estimated FAR kernel from the models (26) and (S.28).

Then, with the function ψ(·, ·) from (S.28), we get

C1(s, t) =

4∑
k=0

4∑
l=0

θk,lζk(t)Zl(s), where Zl(s) =

∫ 1

0

C0(s, u)ζl(u)du.

The values Zl(·) can be simply approximated by Ẑl(·) using the Riemann sums approximation and the

empirical covariance function Ĉ0(s, u) calculated at t1, . . . , t1440 (see Figure S.2). Let

Z =


Ẑ0(t1) · · · Ẑ4(t1)

Ẑ0(t2) · · · Ẑ4(t2)
...

. . .
...

Ẑ0(t1440) · · · Ẑ4(t1440)

 , ζ =


ζ0(t1) · · · ζ4(t1)
ζ0(t2) · · · ζ4(t2)

...
. . .

...
ζ0(t1440) · · · ζ4(t1440)

 ,
and Θ = (θk,l)0≤k,l≤4 the 5× 5−matrix of coefficient to be determined using the real data set, and let

C1(Θ) = ζΘZ⊤, (S.29)

be the lag-1 autocovariance function we consider, computed at the common design pairs of points. The
elements of Θ are chosen such that C1(Θ) is the closest, in terms of Frobenius norm, to the empirical
lag-1 autocovariance computed at the same common design pairs.

S.4.3 Additional simulation results on local regularity estimation

Our estimation approach for estimating Ht and L
2
t depends on two tuning parameters : the presmooth-

ing bandwidth used in (9) and the window length ∆ used in (8). The following paragraphs explain
how we tune these parameters and give the simulation results of the local regularity estimates of FTS
Model 1 and FTS Model 3.

Choice of the presmoothing bandwidth The presmoothing step consists of smoothing each curve
of the time series individually using a bandwidth parameter. To reduce the computation time, we use
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the median of the bandwidths selected by cross-validation on the last 30 curves of the series as the
smoothing parameter of all curves. Recall that given the sample points {(Yn,1, Tn,1), . . . , (Yn,Mn , Tn,Mn)}
of a curve Xn, the cross-validation optimal bandwidth for the presmoothing estimator (9) is defined
as

h∗ ∈ argmin
h

Mn∑
i=1

{
Yn,i − X̃(−i)

n (Tn,i)
}2

,

where X̃
(−i)
n (Tn,i) = X̃

(−i)
n (Tn,i;h) denotes the estimator (9) that is computed without the observations

corresponding to the i−th design point, and the bandwidth h.

Choice of ∆ The choice of ∆ is a crucial point for the local regularity estimation, and extensive
empirical experiences have been devoted to the investigation of how to fix it. The study of the choice
of ∆ was carried out independently of the three FTS Models introduced in the main manuscript. It
was based on a zero-mean FAR(1) where the innovation process is the MfBm with a Hurst logistic
function. The autoregressive operator of the process is an integral operator with a smooth kernel
function chosen such that the conditions of the Example 2 hold. The main idea of the investigation is
to use 200 replications of data generated from the FAR(1) with N curves, each with λ mean points,

to compute the local exponent Ĥt from (11) and compare it over a chosen risk with the estimate of

H̃t from (8) for a given ∆. So, given a grid of ∆ candidates, the best one is the one that minimises
the following relative risk. Let t1, t2, t3 ∈ J ⊂ I such that t3 − t1 = ∆ and t2 = t = (t1 + t3)/2, then

∆∗ ∈ argmin
∆

1

200

200∑
r=1

(θ̂r(t1, t2)− θ̃r(t1, t2))
2 + (θ̂r(t1, t3)− θ̃r(t1, t3))

2

θ̃r(t1, t2)2 + θ̃r(t1, t3)2
, (S.30)

where r denotes the r-th replication of the data set of N curves and λ mean points per curve, θ̂ is
as defined in (10), and since we are in a simulation framework, it is possible to get the true Xn and
estimate

θ̃(u, v) = N−1
N∑
n=1

(Xn(v)−Xn(u))
2
, u, v ∈ {t1, t2, t3}.

The investigation is carried out by testing ∆ values for I = (0, 1]. Namely, for each ∆ in an equidistant
grid of 30 values between 0.01 and 0.2, and for each t ∈ {0.2, 0.4, 0.7, 0.8}, and using 200 replications
of data generated from the setups (N,λ) ∈ {100, 200, 300, 400} × {λ1 = 30, λi+1 = λi + 15, 2 ≤ i ≤
30}, we estimate ∆∗ according to (S.30). The result is that any ∆∗ ∈ [0.1, 0.2] gives a reasonably
small risk and all ∆ values within this interval give relatively the same risk as defined in (S.30).
Moreover, if ∆∗ ≤ 0.1 the risk increases slowly. Therefore, we propose to chose γ = 1/3 and set

∆∗ = min{exp(− log(λ̂)1/3)}, 0.2}.

Additional simulation results for the regularity parameters Here we present the simulation
results in the setup of FTS Model 1 and FTS Model 3. Figure S.3 and Figure S.4 show the boxplots
of Ĥt and L̂2

t defined in (11) for the four pairs (N,λ) at four points t ∈ I = (0, 1] for Model 1 and
FTS Model 3 respectively. The results are similar to those of FTS Model 2. Indeed, the bias of the
regularity parameters estimates decreases as λ increases, and the boxplot are more concentrated as N
increases. Overall, the local regularity estimators show good finite sample performance.

S.4.4 Additional results on mean function estimation

This section presents the results of the mean function estimation using data generated according to
the FTS Model 3 setup. Recall that the FTS Model 1 setup is similar to FTS Model 2, the results
of which are already presented in the main paper, and that it contains twelve setups (Ht, N, λ), so
the results associated with FTS Model 1 are not reported. Figure S.5 presents the average of the risk
function R̂µ(t;h) over 400 independent functional time series generated according to FTS Model 3,
with four setups (N,λ). As for FTS Model 2, the plots provide evidence that h→ Rµ(t;h) is a convex
function which converges to zero as N and λ become larger.

Table S.1 presents the bias and standard deviation of the estimates of µ̂∗
N (t) = µ̂N (t;h∗µ) obtained

for functional time series generated according to FTS Model 3. As expected the bias and the variance
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Figure S.3: Boxplots of R = 100 pointwise estimates of Ĥt and L̂
2
t , for t ∈ {0.2, 0.4, 0.7, 0.8} and four

pairs (N,λ), in FTS Model 1. The dashed lines indicate the true values of Ht and L
2
t .

Figure S.4: Boxplots of R = 400 pointwise estimates of Ĥt and L̂
2
t , for t ∈ {0.2, 0.4, 0.7, 0.8} and four

pairs (N,λ), in FTS Model 3. The dashed lines indicate the true values of Ht and L
2
t .

decreases as N → ∞ and as λ→ ∞. However, larger t also means larger Var(Xt) (see the Figure S.6).
We next study the asymptotic distribution of µ̂∗

N (t). The Q−Q plots Figure S.7 show that, as stated
by Theorem 4, the standard normal distribution is an accurate approximation of the distribution of√
PN (t;hN )/{Sµ(t) + Σ(t)} {µ̂N (t;hN )− µ(t)}.
We end this section on empirical evidence for the mean function estimation by a comparison with

the procedure of Rub́ın and Panaretos (2020), procedure refer to as RP20, in the context of the FTS
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Figure S.5: Empirical average of the risk function R̂µ(t;h) at t ∈ {0.2, 0.4, 0.7, 0.8} over 400 indepen-
dent functional time series generated according to FTS Model 3, with four setups (N,λ).

t = 0.2 t = 0.4 t = 0.7 t = 0.8
N λ Bias Sd Bias Sd Bias Sd Bias Sd
150 40 -0.0714 0.2815 0.0515 0.3681 -0.0799 0.4209 0.1585 0.4598
1000 40 -0.0401 0.1085 0.0275 0.1354 -0.0580 0.1544 0.1113 0.1706
400 300 -0.0158 0.1758 -0.0216 0.2295 -0.0327 0.2595 -0.0288 0.2852
1000 1000 -0.0016 0.0937 -0.0039 0.1206 -0.0008 0.1340 0.0018 0.1477

Table S.1: Bias and standard deviation (Sd) of the mean function estimates obtained from 400 inde-
pendent functional time series generated according to FTS Model 3.

Figure S.6: Estimates of the variance function of Var(Xn). Left: Variance function in FTS Model 2
process. Right: Variance function in FTS Model 3 process.

Model 3. We present in Figure S.8 the boxplots of the selected bandwidths according to RP20’s global
approach and to our local approach. The selected bandwidths have comparable magnitudes in almost
all setups (N,λ). As expected given the increasing shape of the function H, our local bandwidths
are smaller for t in the first half of I and increase when t is closer to 1. Table S.2 presents the ratio
of the Monte-Carlo estimates of the Mean Square Error (MSE) of our mean function estimator and
the RP20 locally linear estimator. Although the ratio is close to 1, our estimator shows slightly better
performance (ratio smaller than 1) in most of the setups (N,λ).
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Figure S.7: Normal Q − Q plots of
√
PN (t;hN ) (µ̂N (t;hN )− µ(t)) /

√
Ŝµ(t) + Σ̂(t) at t = 0.2, with

hN = {h∗µ}1.1 and Ŝµ(t) + Σ̂(t) computed according to (S.25). Results obtained with 400 independent
time series generated according to FTS Model 3.

Figure S.8: Bandwidths selected by RP20 (left boxplot) and by our local approach for the mean
estimation at t ∈ {0.2, 0.4, 0.7, 0.8}; results from 400 independent series generated according to the
FTS Model 3.

N λ t = 0.2 t = 0.4 t = 0.7 t = 0.8
150 40 0.9601 0.9786 0.9971 1.0309
1000 40 1.0036 0.9838 1.0103 1.1388
400 300 0.9762 0.9993 0.9884 0.9913
1000 1000 0.9689 1.0017 0.9840 0.9886

Table S.2: MSE ratio for our mean estimator and RP20; results from 400 independent series generated
in FTS Model 3.
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S.4.5 Additional results on autocovariance function estimation

Similar to the mean function, our adaptive ‘smooth first, then estimate’ estimator of the autocovariance
function is built with the bandwidth h∗γ defined as in (24), obtained by minimizing the estimated bound

3R̂γ(s, t;h) of the pointwise quadratic risk. Again, instead of the dependence coefficient D(s, t;h), we
simply consider

D̂(s, t;h) =
1

N − ℓ

N−ℓ∑
n=1

{
X̃n(s)X̃n+ℓ(t)− ĝℓ(s, t)

}2

+

N−ℓ−1∑
k=1

2

N − ℓ− k

∣∣∣∣∣
N−ℓ−k−1∑

n=1

{
X̃n(s)X̃n+ℓ(t)− ĝℓ(s, t)

}{
X̃n+k(s)X̃n+ℓ+k(t)− ĝℓ(s, t)

}∣∣∣∣∣,
where ĝℓ(s, t) is an estimator of γℓ(s, t),

ĝℓ(s, t) =
1

N − ℓ

N−ℓ∑
n=1

X̃n(s)X̃n+ℓ(t), ℓ ≥ 1,

with {X̃n} the presmoothed curves as defined in (9). Figure S.9 presents the average of the risk

function R̂γ(s, t;h) over 400 independent functional time series generated according to FTS Model 2
with µ ≡ 0, with four setups (N,λ). The plots provide evidence that h → Rγ(s, t;h) is a convex
function which converges to zero as N and λ become larger.

Figure S.9: Empirical average of the risk function R̂γ(h, Ĥs, L̂
2
s, Ĥt, L̂

2
t ) of the lag-1 cross-product

function γ1(s, t) at (s, t) ∈ {(0.2, 0.4), (0.8, 0.2)(0.4, 0.7), (0.7, 0.8)} over 400 independent functional
time series generated according to FTS Model 2 with µ ≡ 0, with four setups (N,λ).

References

Bosq, D. (2000). Linear processes in function spaces, volume 149 of Lecture Notes in Statistics.
Springer-Verlag, New York. Theory and applications.

Chao, M. T. and Strawderman, W. E. (1972). Negative moments of positive random variables. Journal
of the American Statistical Association, 67(338):429–431.

38



Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1):1–22.

Golovkine, S., Klutchnikoff, N., and Patilea, V. (2022). Learning the smoothness of noisy curves with
application to online curve estimation. Electron. J. Stat., 16(1):1485–1560.

Hebrail, G. and Berard, A. (2012). Individual household electric power consumption. UCI Machine
Learning Repository. DOI: https://doi.org/10.24432/C58K54.
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