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Abstract

In this supplement we provide the proofs of the lemmas and additional technical statements
given in the Appendix of the main document. We also provide further empirical results and details
on the construction of our simulation setups and the real data case.

In section S.1 the proofs of the technical lemmas stated in the Appendix section A are given.
Additional results for the local regularity estimation in the case of differentiable sample paths
are stated and proved in section S.2. The proof of the lemmas used in the Appendix section C
are given in section S.3 below. Details of the simulation setups, additional simulation results and
insight on the choice of the tuning parameters involved in the local regularity estimation are given
in section S.4.
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S.1 Proofs of lemmas for the local regularity and examples

In this section we provide the proofs of lemmas in the Appendix of the manuscript and a formal
justification for the Examples 2 to 6. For the sake of readability, we reproduce each of the statements
before providing the proof.

S.1.1 Local regularity properties

Lemma 1. Assume that X belongs to X(§ + Hs, L, J) for some 6 € N*, J an open sub-interval of
1,0 < Hs <1, and a bounded vector-valued function Ls € Ri"'l. Then, for any d € {0,...,6 — 1}, X
belongs to X(d+ Hy, Ly, J) with Hy = 1 and some bounded vector-valued function Ly € Rf’l,

Proof of Lemma 1. By the definition of X (§ + Hs, Ls,J), the Assumption (H6)-(a) is satisfied for
any d < 0. Let us next fix t € J, and d € {0,...,d — 1}. By definition, Asy > 0 exists such
that [t — Aso/2,t + As0/2] C J and (4) holds true for §. By the Mean-Value Theorem, Yu,v €
[t — As,0/2,t+ As,0/2] such that u < ¢ < v, there exists w € (u,v), which may depend on d, such that

E “VdX(u) - VdX(v)ﬂ = (u—)°E [(vd+1X(w))2] — (u—v)2{L3, +2E1(d) + Bx(d)}
where L2, = E [(vdﬂx(t)ﬂ € [ agy1,Tas1) and

Eqi(d) :==E [V X (t) (VI X (w) — VX (1))],  Ea(d) :=E [(vd+1X(w) - vd“X(t)ﬂ .
By Cauchy-Schwartz inequality we get
‘IE [|vdX(u) - vdX(u)ﬂ — L3, (u— U)Z’ = [2B1(d) + Bs(d)| (u — v)?
< (2Laev/Ba(d) + Ba(d) ) (u— v)?
< (2\/@\/&7@) n Eg(d)) (-0  (S.1)

It thus remains to bound F3(d). Without loss of generality, the length of J is assumed smaller than 1.
The case of d < §j—2. By the Mean-Value Theorem, condition (3), and since [w—t| < [u—v| < As o,

Ey(d) =E UvdﬂX(w) - VdHX(t)ﬂ < Tapo(w — 1) < Bayalu—vf*.

Then (S.1) implies (4) with Ay o = Aso, Hat =1, S2 = 21/Ga11+/@at2 + Garo and Bq = 1/2.
The case d =9 — 1. Since |w —¢| < |u —v] < Aso < 1, condition (4) considered with § implies

Ea(6—1) = E[|V9X () = VX ()] < L2, — 12700 4§20 — o216 2% < {13, + 52} u— o[
We then deduce from (S.1) that, V|u —v| < As_19 = As o,

E[IVX () = VX ()] = L3 o(u—0)?| < S Ju— o Hect? with Hye =1, fa = H,

S | = 2\/6d+1\/f2 + 52 +f2—|—5’§, where sup,c; Ls+ < L,0 < H < inf;e; Hs+. Then (4) follows. O

Example 2. [Local regularity of FAR(1)] Let {X,,} be the stationary FAR(1) time series defined by an
integral operator with kernel ¥ and with an MfBm functional white noise with Hurst exponent function
He. Under the conditions stated in Example 2, {X,} belongs to X(H¢,1;1).



Proof of the statement in Example 2. Let t in the interior of I, and u,v € I such that u < ¢t < v.
Without loss of generality, assume the length of I is equal to 1. By Jensen’s inequality,

13,000 = X0 (0} = {6a(0) = 0N < [ [(sv0) = w(s.0) P X2 s(5)ds < Clu=olPe [ X2 (5)ds.
Using the stationarity of {X,,}, we have
s (Xn(1) = Xu(0)) = v2 (€n(u) = &0 (0)) |
< v ({Xn (1) = X (0)} = {€a (1) = &a(0)}) < CV202(|| X o) Ju — o] .
By the properties of the MfBm, assuming sup,c; He . <1,
V3 (€n(u) = €a(v)) = |u— oot {1+ O(Ju — vf*P)}
for some B¢ > 0 (Wei et al., 2023). Next, since |22 — y?| < |z — y|*> + 2|y||z — yl, we get

B [1X0(w) = Xu(0) ] = u = 0f2¢+| < Co(Co +2)|u — v]2Hes 250,

with Cyp = C2u5(|| X || ») and By = min{Be, Hy — He 4} > 0. Hence, {X,,} belongs to X' (He,1;1). O

S.1.2 Lemmas on L — m—approximability

We first provide the proofs for the results stated in the Appendix of the manuscript. For the sake of
readability, we recall the notation and the statements. The multiplication operator ® is defined as

(f®g9)(s,t)= f(s)g(t) Vs,t €l and (€ Z.
Meanwhile, the tensor product o is defined as
(XnOYn) (g) = <Yn79>7-c Xn, VX, Yn,g €C.

Finally, £ = £L(C,C) is the space of bounded linear operators on C(I) equipped with the sup-norm.

Lemma 2. Let {X,} and {Y,} be two Lj —m—approzimable sequences in C, for some p > 4. Define :
1. zV = A(X,,), where A€ L ;
2. 7% = X, + Yo;

7 = X, Y,;

Z’V(l4) = <Xn7Yn>'H S R;

Gvoo e

78 =X, oY, € L;
6. ZT(Lﬁ) = X,, ® Xyye, where here {X,,} is L, — m—approzimable for some p > 8.

Then {Zr(Ll)}, {Z,(f)} are L — m—approzimable sequences in C, and {Zfzﬁ)} 18 LZC)/Q — m—approximable

sequences in C and its ]LZ/2 — m—approzimation is Xy(lm) ® XT(LT#), If X,, and Y, are independent,

then {Zr(f’)}, {Zr(f)} and {Zr(f)} are LP — m—approximable in their respective spaces.

Proof of Lemma 2. We use the simplified notation Z,, for all the points of the Lemma. Moreover,
without loss of generality, we assume the length of I is equal to 1.

1) Let Z, = A(X,), and let zm = A(XT(Lm)) be its coupled version. The definitions of £ and
[IA[l, entail that

vy (120 = 25 loe ) < NANcvp (10 = X0 o)



Since {X,,} is L§ — m—approximable, the sequence {v,(||Z, — z{m lloo), m € Z} thus converges in the
sense of condition 4 in Definition 3. As a consequence, {Z,} is LY, — m—approximable.
2)If Z, = X,, + Y, we have
v (170 = 28" o) < v (IXn = XElloo ) + v (¥ = Y™l )

and the statement is a direct consequence of the fact that {X,,} and {Y,,} are L? — m—approximable.
3) When Z,,(t) = X,,(¢t)Y,.(t), Vt € I, we note that

Zn = 25" = X (Yo = V™) 4 Y0 (Y = ¥
By the independence between X,, and Y,,, we have
vy (120 = 20" o0 ) < v (1Xnlloo) v (¥ = Y0 ) + 2 (10 ) v (10 = X 1) -
Using the stationarity, 1/,;(||Yn(m)||oo) = Vp (||Ynllso) and vp (|| Xp|loo) are constants. Hence, {Z,} is

L7 — m—approximable.
) If Z, = (X,,,Y,)3, we have

n

Zn — Zr(zm)’ = ’<Xna Yn>7~t - <X7(Lm)7y(m)>7'[‘ < ”Xnyn - X'r(Lm)ngm)Hoo )

and thus
vp (Zn = 20) < vy (11X Yo = XEV )
By the property at point 3), {Z,} is L? — m—approximable.

5) Here Z,, is the Hilbert-Schmidt operator defined by the tensor product (X, 0 Y;,)(:) = (X, ) Y,.
Thus the notion of L — m—approximability is considered with C replaced by the space £ equipped
with [|-||| ., which is a Banach space. Since |||, < [I[l5, and

(Za(e)) = 28 (e)] () = (X ehaeat) = (X0, e)uY, ™ (8) = (XnYalt) = XYM (1), 5,

using Parseval’s identity, we get

2

g/ i<XnYn(t)—Xgm>y,§m)(t),ej>2 dt

H I

2 o0
2= 27| < 20 ||Zuten) - 287 )|
00 =1

j=1
2
= (10 - XY @ = ([ (Xae¥a®) - X(6Y0) dsat
I IxI
Next, since (ab — cd)? < 2a%(b — d)? + 2d*(a — ¢)?, we get

(Xal)Yal®) = XV VMD) <2 [Xals) (Yalt) = Y 0)] 42 [V 0 (Xuls) - X))

By Cauchy-Schwarz inequality and the subadditivity of z — /z,

Zn— 20| < ¢2 (X2 Y = YA™ 2, + IV 1201 X0 — V™ 12,
(o)

< VB (I Xalloe[¥ = Y™ oo + 7 ool X — ¥ o)

Since vp(-) is a norm, and the processes X,, ans Y, are independent, we get,

d(

We then conclude that {Z,} is L. — m—approximable.

Zo = 25| ) < v (1Xalloe) v (1Y = Y lloe ) + 25 (1¥alloo) v (11X = X5 )



6) Here, Z,, = X,, ® X,,+¢ and we have

Zn = f(émfn—la .. ) o f(§n+€7€(n+€)—l7 .- ) =g (£n+€a€(n+€)—1a s agnagn—lv e ) .

Thus, we can define

2™ = g (EnrerEmsn 11 sEmsEnmtoee s 6 E g 1ys ) = X0 © X 3T,
which entails that
Ty = 70 = X @ Xnpo — XM @ X770
= (Xn - Xflm)> @ Xpio+ XM ® (Xn+é - XSZZ”) )

and

m m m m-+£
1Z0 = Z oo < 11X = X5 loo | Xntelloo + 12X oo | Xnre = X577

By Cauchy-Schwartz inequality, we then have

Voo (120 = 280 ) < v (1% = X oo ) v (| Xt elloo)

m m+L
v (1K e ) v (1 Xre = X5 e )

and thus {Z,,} is ]L’CJ/ ? — m—approximable. This conclude the proof of the Lemma. O

Lemma 3. Let {X,}nez be a LY — m-approzimable sequence. Let s,t € I, t # s, and let ¢ be a
constant. Define
Fo=X,() eR  and G, = (Xn(s)— Xn(t)) +c.

Then {F,} is LP — m—approzimable in LP and {G,} is LP/?2 — m—approzimable in LP/?.

Proof of Lemma 3. With Fm = x(m (t), we have

vy (Fa = F) < v (10 = XEc)

The LY — m—approximability of {X,,} therefore involves the L” —m—approximability of {F,,}. For Gy,
let GI™ = {Xflm)(s) - Xflm)(t)}Q. By Lemma A.2, {X,,(s) — X,,(t),n € Z} is L? — m—approximable.
Using the Cauchy Schwarz inequality and the stationarity, it is straightforward to deduce that G, is
ILP/2 — j—approximable. O

S.1.3 Examples of . — m—approximable FTS

Example 3 (L? — m—approximability of FAR(1)). Let ¥ be a bounded linear operator such that
W)l <1 and {&} C L2 be ii.d. with mean zero. A zero mean sequence {X,} of elements of C
follows a FAR(1) model if

Xolt) = U(Xu 1)) +&u(t),  tel, nel,

see Bosq (2000, Theorem 3.1). Then {X,} is Lg — m—approzimable.

Proof of the statement in Example 3. According to the Theorem 3.1. of Bosq (2000), the FAR model
has a unique stationary solution {X,,} C L% and admits a moving average (linear) representation

oo

Z ()



where W7 is the j*" iterate of W. For each n, let {§§”),j € Z} be an independent copy of {{;,j € Z}.
Then, the approximation of X, is given by

X = Z (&, ) + Z W),

and using the linearity of ¥, we get
X = X = 3w (60— €.
j=m

Applying the sup-norm and v, on both sides, using the triangle inequality, noting that {{;} and {{j(n)}
are i.i.d., and [|¥[|, < 1, we get

L)
o (I = X{ ) < 200 D 0L < N 205 0, asm o,
j=m o0

where ¢ has the same distribution as &;, and

i vy (1% = Xl ) < .

m=1

It follows that {X,,} is L§ — m-approximable. O

Example 4 (L? —m-approximability of general linear process). Suppose {X,,} € L2 is a linear process
like in the Example 4, with the errors distributed as & and satisfying vp(||€]|s) < 00, p > 2. Moreover,

the operators satisfy the condition
oo o0
>l < oo

m=1j=m

Then {X,} is LY — m-approzimable.

Proof of statement in Example 4. Let {f(n)} be an independent copy of {{;} for each n. Then, the
¥ — m—approximation of X, is given by

m—1 o]
XM =" W)+ Y w(Er)
§=0 j=m

Thus, following closely the same steps as the FAR(1), we have

vy (1% = X0oo) < v { || 30 95 (6nms =€) | < 2000€000) D 119501,
j=m I Jj=m
and thus - o .
vy (1% = X oo ) < 200(6) 30 D Il < oo.
m=1 m=1j=m
This shows that {X,,} is L} — m—approximable. O

Example 5 (L? — m-approximability of product process). Suppose that {Y,,} C LY and {U,} C L?
are two independent LP — m—approzimable sequences in the respective spaces. Their representations

are Y, = gy (1, m2,...) and Up = gu(y1,72,- .. ), respectively, where {ng}tr and {yi}r are two i.i.d.
random sequences. Then, the sequence X,(-) = U,Y;(+) is LY — m—approzimable sequence.



Proof of statement in Example 5. Let X,Sm) = U,(zm)Yn(m) be the LY — m—approximation of X,,. Then,
X, — X" = Uy, — UM™Yy =, (Yn - Y,§m>) +Ym (Un - U,S””) :
taking the v, norm both sides, we have

vy (1% = X5 oo ) < v (108 (Yo = Y™ ) o) + 2 (17 (Un = U 1) -

Using stationarity and the independence between Y,, and U,,, we get

vy (1% = X0lloo ) < v (Un) v (¥ = Yoo ) + 2 (Valloe) v (U = US™)

Thus,
Sy, (Xn - X,gm>) <, (U) Y v (Yn - Y,W) +up (V) Y v (Un - U,S””) < 0,
m=1 m=1 m=
since Y,, and U,, are L — m—approximable the respective spaces. This concludes the proof. O

Example 6 (L? — m—approximability of ARCH model). Let § € C be a positive function and {&,} a
sequence of independent copies of & € LY. Let 5(s,t) be a continuous non-negative kernel function in
L2 (I x I). Then,

Y, (t) = &u(t)on(t)  where  o2(t) = §(t) + /B(s, Y2 | (s)ds, (S.2)
I
is the so-called functional ARCH(1) series. If for some p >0
IE{J&I(@)}”2 <1 with H(&%) = sup/ B(s,1)E%(s)
tel

then (S.2) has a unique, strictly stationary solution {Y,}, which is is L} — m—approzimable.

Proof of statement in Example 6. The existence and uniqueness of the solution of (S.2) was proved
by Hérmann et al. (2013). Theorem 2.2 of Hérmann et al. (2013) shows that {o,} admits the MA
representation

0721 = g(£n717§n727 .. ')7

with some positive, measurable g € C. For each n, let {55")} be an independent copy of {{;}. Then,
the coupled version of Y,, is given by

(n)

where {002 = g(&n, - Enmmat, En 1 ¢ | ....)is the coupled version of o2. Note that

H1/2

1Y — Yrgm)”oo < |Ién J’IQL - {Jﬁzm)}2 )

because |, + o4™| > |oy — o4™|. Since &, is independent of o2 — {o{™ }2, we get

p/2
B{I%, - Y} <E e e .

Theorem 2.3 of Héormann et al. (2013) provides the following upper bound
B{ ]2 - oy

where 0 < r =r(p/2) <1 and ¢ = ¢(p/2) < co. Consequently, we have,

on —{oy)’

p/2
<er™, Vn,m,

vy (¥ = Y™ oo ) < 7070, (lelloc), ¥y

Then the series of general term v, (||Ym —yim HOO) is convergent, and this shows that {Y,,} is LP —

m—approximable. O



S.1.4 Technical lemma: proxies error
Lemma 4 (Proxies accuracy). Lett € J.

1. For any ¢ € (0,1) and 0 < A < Ag g such that 4A%% S2 < L21log(2)p, we have
|Hy — Hy| < /2.

2. Let H € (0,1] such that |H — H| < ¢ < 1. For any ¢ € (0,1) and 0 < A < Ay such that
S2A2P0=2¢ < 4 /3, we have
O(t1,t3) — Ly A2
A2H

< /3.

Proof of Lemma 4. 1. By condition (4), we may rewrite 6(u,v) for u,v € [t — A/2,t + A/2] as
O(u,v) = Lu — v* {1 + p(u,v)},

where |p(u,v)

| < (So/Ls)* A%, Since 4A2P0 52 < L2log(2), we have |p(u,v)| < 1/2. Using the fact
that  — log(1+ =

) is Lipschitz continuous on z € (—1/2, 00), we get

_ log(1 4 p(t1, t3)) —log(1 + p(t1, t2))|
21og(2)

1 2

2. By condition (4), if A2P0=2¢ 82 < 4)/3, we get

7]

< (So/Ly¢)? AP0 < /2.

9<t1, tg) — L?AQH"
A2ZH

‘ < SgAPor2UH—H)  GEN2P0=20 <4 /3,

S.1.5 Technical lemma: Nagaev inequality

The local regularity estimators in Section 3 are functions of

O(u,v) = %Z ()?n(v) . Xn(u))2, uv € J.

~

To study the properties of 8(u,v), we use the Nagaev-type inequality for sums of dependent random
variables, see Liu et al. (2013). When dealing with real valued random variable, the dependence
measure used in P — m—approximation is slightly more restrictive that the functional dependence
measure defined in Wu (2005, Definition 1).

Wu (2005, Theorem 1) establishes that the measure of dependence of a stationary causal random
variable X,, on {;,7 > m} can be bounded by the dependence measures of X,, on individual ;’s.
Therefore, the author considers only the element-wise dependence in the sequel of his work. In the
same way, Liu et al. (2013) adopt the functional dependence measure on individual {; and state Nagaev
inequality in this framework.

Nagaev inequality of Liu et al. (2013). Let {U,,n € Z} be a stationary, centered, real-valued
causal process of the form

U, = g(gnvgnflv t )7

where {&,}nez are ii.d. real random variables and g : R® — R is a measurable function. Let
{&),,n € Z} be an independent copy of {&,,n € Z}. A coupled version of U, is denoted by

U1/n = g(fmagm—lv T aglvf(l)ag—la T )a



and the corresponding distance is measured with

o0

Ay = Vp(Un = Up), v =" (mP210, )1/<p+1>.

m=1

We assume that a short-range dependence condition is satisfied, i.e., > - Am,p < 00. Let S, =
Uy + -+ + U, be the partial sum of the process. Liu et al. (2013, Theorem 2) provides Nagaev-type
inequality for S} = max{|S,|, n=1,...,N},

. N, o » , cpe? cpe?
V€>0, P(SN 25) Scpg ('U +||U1||p)—|—cpexp —W +2eXp —m s (83)

where ¢, = 29p/log(p) and ¢, are two positives constants. The expression of the constant ¢}, depends
on the Gaussian-like tail function defined as:

y) =Y exp(—j%°), y>0,¢>0.

For instance, if ¢ = v/ Nu'T1/Py and y > 1, then we get c; = 4G _5,(1)e. Now, if y < 1, we can take
a fix and very small yo such that y > yo and obtain ¢}, = 4G1_5/, (v/@yo) exp{cpy}. Finally, we can
consider,

¢, = max {4G1_5/,(1)e;4G1 2/, (\/pyo) exp{cyg}} -

Nagaev inequality under our weak dependency assumption. The inequality (S.3) involves
only element-wise dependence coefficients whereas the ILP —m-approximation measures the dependence
of U, on the whole sequence {{;, j > m}. Let us now consider {U,} a L? —m—approximable stationary
process, and let the associated coupled version of U,, be defined as

U7(r:n) 79(5”“5”1 1, agla (()M)ag(_wll)ag(_w;)a)a
where, for each m > 0, {§i(m),z' € Z} is an independent copy of {;,i € Z}. Let
Um.p = Vp (Um — U&m)) .

Lemma 5 states a version of Liu et al. (2013, Theorem 2) under IL? — m—approximability assumption.

Lemma 5 (Nagaev inequality). Let {U,} be a real centered valued LP — m—approzimable stationary
process such that
1/(p+1)

(o]
U::Z(mp/2 lmp) < 0.
m=1
The Nagaev-type inequality remains true, that is
2

P(SE > &) < N, o P , CpE 5 cpe?
(Sk 2 &) < ey (W7 HIOE) + e exp |~z ) 200\~ g )

where ¢, = 29p/log(p) and c,, are two positives constants.

Proof of Lemma 5. The proof of this lemma follows closely the lines of the proofs of Liu et al. (2013,
Theorem 1 and Theorem 2), therefore some similar parts will be omitted. The key step is their
Equation (2.12) in the proof of Theorem 1 where ||Uy ; — Ui j—1]|p is bounded by A;,, with Uy ; =
E [Uk|&k, - -+ »&k—;]- So it remains to show that ||U; ; — Uy j—1||p is also bounded by v;,. Note that

Urj = Uj-1 =E[Uilér, - &gl —E U1, &)
=E [9(517507"' 751—(]'—1)751—]"61—(]’-',-1)7'")|£17 T 751—3']
—E [g(&1, &0, &1 E1—j5 Ei— 1) )€ &) -



Since {fi(j )}iGZ is an independent copy of {&;};cz, the second conditional expectation of the last display

stay unchanged if we replace {&1_j,&_(j41),--- } by {f%@j,ﬁij_)(jﬂ), e }, that is
Urj—Urj1 =E[U1l,--- 6] — E {Ul(j)|§17 e 7517(3'71)}

Since Ul(j) is independent of &_; (it depends no longer on &;_; but on fﬁ)j), the variable ;_; can be
added in the conditioning part without changing the expression,

Uj—Uj-1=E [U1 — U9, - ,517]} .
Now, using Jensen’s inequality, we get

E[|U1; —Ur;1l’] <E HUl ~u

]
Using the stationarity of {U,} we obtain
1015 = Urj-all, < vip,

which conclude the proof. O

~

S.1.6 Technical lemma: concentration of 6(u,v)

o~ ~

We now study the concentration of (u,v) and 6(u,v)/0(u,v).

Lemma 6. Assume the conditions of Theorem 1 hold true. Let u,v € J, u < t < wv, be fized points
such that AJ2 < |u—v| < A and let

no =mno(A) =8 (2\/%+ \/W) VR ().
For any k > 0, define the probabilities
pa (u,v;K) =P [a(u, v) > 1+ m)ﬁ(u,v)} , po (u,v3k) =P [g(u, v) < (1- m)ﬁ(u,v)} .
Then, for any n such that ng < n < 1, we have

P (‘é\(u,v) - G(u,v)‘ > 77) < NL1]2 +bexp (—eNn?),

where b is a universal constant, and a and ¢ are two posilive constants depending on the dependence
measure and the bound of the fourth-order moment of X (u). Moreover, for any k such that ng <
kO (u,v) < 1, we have:

22Ht+2a

N,-;QL?A““) .

_ 4
max [pg (u, v; k), Py (u, v K)] SH 2

~

Proof of Lemma 6. We write 6(u,v) —60(u,v) as the sum of a bias term and a centered stochastic term :
. 1 X N
0(u,v) — 0(u,v) = ~ n;l Zn(u,v) + {IE (9(u7v)) - 9(u7v)} , u,v € J,

~ ~ 2 - - 2
where Zn = Zn(u,0) = (Xn(u) - Xn(v)) ) (Xn(u) - Xn(v)> :
Bounds for the bias term. Since {X,,} is stationary and the sequence

{Cn = (anTn,lu v 7Tn,Mnu€n,17 cee 75n,Mn)a n 2 ]-}7
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are i.i.d. (see (H2), (H3), (H4) and (H5)), the process {X,} is stationary and we thus have
E [0(u,v)] = 0(u,v) = 2B [{Gn(u) = Gu(0) HXn (1) = Xn(0)}] + E [{Gn(w) = Ga(0)}?],

where G, (u) = X, (1) — X, (u ) By Assumption (H10) and the inequality (z + y)? < 2(z? + y?), we
get E [{G,(u) — Gn(v)}?] < 4R2(X) < 4BA™7. Cauchy-Schwarz inequality then implies

‘]E [g(u,v)} - H(U,’U)‘ < no/2. (S.4)

Concentration bounds for the stochastic term. Recall that, for any N > 1, the finite
sequence {(,,1 < n < N}isiid. and this implies that the finite sequence {X,,1 < n < N} is also
stationary. We now complete these finite sequences to infinite ones, {(,,n € Z} and {)?n,n € 7},
by generating independent M, from the same distribution as Mi,..., My, and independent copies
(Thiseni)y - (Tun, En,m,) of (T,¢), for any n & {1,..., N}. By the definition (9) and using the
MA representation of {X,}, see (6) in Definition 3, we can rewrite X,, as,

M,
jzn(u):zwnz( n nz +2an nz)fnz

=1
M, M,

= Wai(w) f(§ny En—1, - ) (Tni) + Z W,i(Wo(Tni)en: = g ((Cny€n)s (Cr—1,€n-1)s---) ,
i=1 =1

where {((n,&,)} is an ii.d. sequence in the measurable space S = N* x {Up,>1]0,1]™ x R™} x S and
g : 8> — H is some measurable function. Then a coupled version of X, (u) is

ZWH’L X(m rL’L +ZW7L’L nl)6n17 mzl'

From this and (H9), a constant C' exists such that \)ZT(Lm) (u) — Xn(u)| < C|X, — xim loo- According
to Definition 3, the sequence is L.* — m—approximable. Lemma 3 then entails that the sequence
{Zn} = {Zn(u,v)} is L2 — m—approximable. Let vy, 2 = v2(Z,, — Z,(nm)) be its dependence coefficient,
where Zr(nm) is the associated coupled version of Z,,. Using Cauchy-Schwartz inequality, we get

230 (1) - 3]

Since {X,,} satisfies (H7), o(-) is bounded and (H8) guarantees v4(¢) < oo, we necessarily have
va(| X lloe) < C, for some constant C independent of n. Finally, since v4([| X, X(m) loo) = O(1/m®)
with a > 3/2, the dependence coefficient of {Z,,} satisfies the condition v := "> v 5 < 00, which

mlm

will allow us to apply Lemma 5. More precisely, in view of (S.4), we deduce that Vn € (7]0, 1),
. 1 Y
P(a,fo, )<IP’— Z,>n/2].
)=o) 0) <2 (3202 2

Applying then Nagaev-type inequality from Lemma 5, we get

402 (U3 + V%(Zl))
Nn?

~ c c
P (9(u,v) —O(u,v) > 77) < + ¢ exp (—ﬁNnQ) + 2exp (— 5 2 N7]2>

5(Z1)

< N 2—|-bexp( eNn?),

where a = 4co (V2 +v3(Z1)), b = ¢4 + 2 and ¢ = min (co/(4%), c2/(4v3(Z1))). Moreover, by (4) and

(12) we have
O(u,v) > |u—v|*"L2/2 > 0.

11



This implies 6(u, v) > ng, provided A is sufficiently large, and x > 0 exists such that 79 < k6(u,v) < 1.
We can then consider 7 = kf(u, v) in Lemma 5 and deduce

e (u,v; k) =P (é\(u,v) > (1+ K)O(u,v)) < m + bexp (—eNk*0%(u,v)),
2142 ¢ 274 AAH
S NR2LIAT: TP (—24H,,+2 Nw LA ) ‘
Similar arguments apply for bounding pg (u,v; k). The proof of Lemma 6 is thus complete. O
S.2 Local regularity estimation for smooth trajectories

Let us recall that, following the lines of Golovkine et al. (2022), in Section 3.2 we defined
5= min{d eN: ﬁd,t <1l- @(X)} ,

where }AIdJ is an estimator of the local regularity exponent parameter of {V9X,} at ¢, estimator to be
defined below. A natural estimator of the local regularity parameter oy is then

Oy = ng ff&t.

The sequential procedure based on § was summarized in Algorithm 1. It thus remains to study the
estimators for the Hy, d = 1,2..., introduced in Section 3.2. Like in the non-differentiable case, we
first define proxies for these quantities that we next estimate nonparametrically.

Proxy values of H;; and L?Lt. Let d > 1, A < Ay and t;,%2,t3 € J such that t3 —¢; = A and
ty =t = (t1 +t3)/2. In view of (H6), we consider the following proxy values of Hy; and L7, :

_ log(&d(tl,tg)) — log(ﬂd(tl,tg))

fId,t = ﬁd(A) 210g(2) )

~ ~ Qd t1,t 2

12, =13,(8) = # where  04(u,v) = E [{VdX(u) — VX (v)} } .
Like in the non-differentiable case, an estimator of 04(u,v), u,v € J, is easily obtained from the
estimates of the d—th derivative of the samples paths.

Presmoothing the derivatives. Let d > 1. Given the data points (Y, T.), 1 < i < M,, we
consider a linear smoother under the form

M,
VX, () =Y WY

(
n,i

(W)Y is ued, n=1,...,N, (S.5)

1=

—

where the weights {Wé‘?}izl_“ M, are built from the data points. The local smoother we have in mind is
the local polynomials. We consider the following assumptions for the presmoothing of the derivatives.

(D1) A constant ¢y > 0 exists such that

n

sup supz ‘Wfldz)(u)‘ < ew, vd € {0,...,40}.
n=1..NueJ ;= '

(D2) Constants B > 0 and 7 > 0 exit such that

Ra.q(\) = supE (ﬁ%?(u) - VdX(u)|2> <BAT, vdel{o,...,5).
ueJ

For instance, up to a slight modification, local polynomial smoothers satisfy the conditions (1) and

(2).

12



Local regularity estimators of the d-th derivatives. For d > 1, given a presmoothing estimator
ViX, (u) of VX, (u), for u € J, we define the estimators of Hy, and Ly, as

.- log Oa(t1, t3) — log Ba(t1, t2)
bt 2log(2) ’

R ) (t1, 3) R 1 — — 2
2 7d\"1 %) where _75 Vix —Viéx
Lo, = 2B, her 04(u,v) N ( n(u) n(U)) .

In view of the proof of Lemma 1, let us define
ﬂd:1/2 if d§5—2, and [3(5_1 :ﬂ,
2
13, =E[(V*X0)°] € [agir@an], 1<d<d-1,
and

5322\/@”1\/6‘”2 + Gg+2 if d<§-—2, and S(?,l:2\/6d+1\/fz+5§+f2+5§.

We now state the counterparts of Theorems 1 and 2 for the case of differentiable sample paths.
The proofs are provided in the next section.

Proposition 1. Assume that (H1) — (H8), (D1) — (D2) hold true. Let d € {0,...,d} and ﬁd’t,zit
are defined with A < Aso. Constants Cyq exist such that, for any ¢ € (0,1) satisfying the conditions

L2, log(2)
Aag? < %ap, (S.6)
A2 < CuLd A (S.7)
we have
f

P(las — ay] > @) < (2+9) + bexp (—gngzA‘l) ,

Np2A4

for some universal constant b, provided A is sufficiently large. The constants Cy depend on the ag’s
from (3) and B from (D2), while the positive constants f and g depend one the dependence measure.

Proposition 2. Assume the conditions of Proposition 1 hold true. Moreover, constants éd > 0,
d e {0,...,0}, exist such that for any ¢, € (0,1) satisfying

3AT2P NP8 <y, (S.8)
6L A *pllog Al <1,
ATT/2 < CN'dAmpi/}AQHd”’, (S.10)
we have
72 2 td fa
P (‘Ld,t - Ld,t‘ > 1/)) < N¢2A4H{i+44p + N¢2A4Hd

+4bexp (—gaN@?Ae) 4 pexp (—[a N2 A1)

for some universal constant b, provided A is sufficiently large. The constants éd depend on the ag’s
and B, while the constants cq, f4, 84, la are determined by the dependence structure of X.

13



S.2.1 Proofs of the concentration bounds for regularity estimators

The proofs below are using conditions (D1) and (D2). In order to hold with local polynomials, condition
(D1) requires to modify the smoother, for instance to set it equal to zero, when the smallest eigenvalue
of the design matrix used to define it is too close to zero. See (see Tsybakov, 2009, equation (1.66)
and Assumption (LP), page 37). Under our assumptions, the probability of the event of the smallest
eigenvalue close to zero is exponentially small. See Golovkine et al. (2022). For simplicity, we omit
exponentially small probability events and assume (D1) holds true.

Let us recall, for d > 1, A < Ay and t1,t9,t3 € J such that t3 —¢t; = A and to =t = (t1 + t3)/2,
the proxy values of Hy; and L7, are

1Og<9d<t1, tg)) — log(ed(tl, tg))
21log(2) ’

where Oa(u,v) =E {(VdX(u) - VdX(v))q .

ﬁd,t - ﬁd(A) -

04 (t1,1t3)

Ly = Li (D) = “Rams,

—

Moreover, given a presmoothing estimator V4X ,(u) of V¢X,,(u), for u € J, the estimators of Hg,
and L?Lt are defined as

log fa(t1, t3) — log Ba(t, t2)
21og(2) ’

N
, where Z (VdX 6_5)/(”(11))2 .

Hdt — Hy +(A) =

- B (1t
Lit = Lgt(A) = 761( = 3
5 5 A2Hd'wt

Lemma S.1. Assume that the assumptions of Corrolary 1 are satisfied.
Let w,v € J, u < t < v, be fized points such that A/2 < |u—v|] < A < Aso and, for any
d=1,...,6, let

Na = na(A) = 8 (2\/@ + \/Rg,d(A)> \/de(A)
and, for any k > 0,
pg (0, v35) =P [Da(w,v) > (L4 m)0a(w,0)], pg (u,05m) = P [a(u,0) < (1= K)8a(u,v)]
For any n such that ng <n < 1,
P (‘é\d(u, v) — Od(u,v)‘ > 77) < N 2 +bexp (— edNUQ), d=1,...,96,

where b is some universal constant, and ag and eq are two positive constants determined by the depen-
dence measure. Moreover, for any x such that ng < kg(u,v) < 1, we have:

24Hd +2 ag

max [p;(u,v, /ﬁ),p;(u,v; I‘i)] S W

+beXp( WNK}QL A4Hd‘t), dzl,,(5

Proof of Lemma S.1. Following the lines of the proof of Lemma 6, we can rewrite 04(u,v) — 64(u, v)
as the sum of a zero mean stochastic term and a bias term,

ad(u v) — O04(u,v) =~ Z Zn,a(u,v) {IE [ad(u,v)] - Hd(u,v)} ,
where, for any n=1,..., N,
—~ — 2 — — 2
Zna = Zna(w,0) = (VX (0) = VIX 0 (0)) — B (VIX () = VX (0))

Bounds for the bias term. Since {X,,} is stationary and the sequence

{Cn = (Mn;Tn,la oo 7Tn,Mﬂ,75n,17 oo agn,l\/fn)an 2 1}
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is i.i.d. (see assumptions (H2),(H3),(H5) and (H4)), the processes {%(n}, 1 <d <4, are also

stationary, and thus
E [a(u,v)] ~0a(u, v) = 2B [{Gna(u) = Gra(0)} { VX () = VX, (0) }] +E [{Gra(e) = Gn,al0)}?]

where G, 4(u) = %n(u) — V4X,,(u). Since (x +y)? < 2(z? + y?), by Assumption (D2), we get
E [{Gn,d(u) — Gn’d(ﬂ)}ﬂ S 4R2’d()\).

Cauchy-Schwarz inequality then implies
‘E {@\d(u,v)} — 04(u, v)‘ < na/2. (S.11)

Concentration bounds for the stochastic term. Recall that, for any N > 1, the finite
sequence {(,,1 <n < N} isiid. and this implies that the finite sequence {V?¢X,,1 <n < N} is also

stationary. We now complete these finite sequences to infinite ones, {(,,n € Z} and {ViX, ,n € Z},
by generating independent M,, from the same distribution as Mji,..., My, and independent copies
(Thiseni)y - (Tnat, Enm,) of (T,€), for any n & {1,..., N}. By the definition (S.5) and using the

MA representation of {X,}, see (6) in Definition 3, we can rewrite V4X,, as,

M,
VIX, (1) = S WD (W)X, (T) +ZW‘” (Tr,i)€nis

i=1

ZW(d) fnagn 13-'- nz +ZW(d) nz)gnz;
= 4d ((Cnv fn)v (Cn—h fn—1)7 .- )
where {(Cn, &)} are i.i.d. in the measurable space S = N* x {Um>1[0,1]" x R™} xS and g4 : S 5 H
is a measurable function. Then a coupled version of V4X,, (u) is

vdX (u) Zng?X,gm) ZW(d) Tpi)eni,  m> 1.

A consequence is that

—— (m) ——
ViX, (u) = VIX,(u)| < ew| X, — Xr(Lm)”OO’

according to Assumption (D1). By Definition 3, the sequence is then L — m—approximable. Lemma
3 then entails that the sequence {Z,, 4} is L? — m—approximable. Let

Vm72 = (Z Z’r(rtn;)

be its dependence coefficient, where Zf:'g is the associated coupled version of Z,, 4. Using Cauchy-
Schwartz inequality and the stationary, we get
o ([ - x50 )
o0 o0

Since {%{n} satisfies (D1), {X,,} satisfies (H7), o(-) is bounded and (H8) guarantees v4(c) < oo,
we necessarily have v4(||V?X ,,]|o0) < C, for some constant C independent of n. Finally, since by our

conditions v4(|| X, —Xy(nm)Hoo) = O(1/m®) with o > 3/2, the dependence coeflicient of {Z,, 4} satisfies
the following condition

I/m,g S 81/4 (H%m

oo

Sl

m=1
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and thus allows us to apply Lemma 5 above. More precisely, using (S.11), we first get

N
P (é\d(um) —04(u,v) > n) <P (117 Z Zn,d > n/2) .

Applying next Lemma 5, for any n € (14, 1), we get

~ 402 (V3 + V%(Zl’d)) , Co 2 Co 2
P <6d(u,v) - 6d(U7'U) > 77) S N’]’]2 + Cy €XP (-ENT] ) + 2€Xp —mNT]
ad 2

< Nif? + bexp (—eqaNn?),

where ag = 4cz (v 4+ 13(Z1,4)), b = ch + 2 and eq = min (c2/(4°), c2/(4v3(Z1,4))). Using (4) (with
L3, = E{VIX(1)}?] and Ago = Aso when d < J; see also the proof of Lemma 1), and the condi-
tion (S.6), we get

Oq(u,v) > Ju — v|2Hd’tL(2“/2 > 0.

We thus get that ng < 04(u,v), for a sufficiently large A, values x € (0, 1) exist such that ny < k84(u, v).
We can then consider n = k64(u,v) in the Nagaev-type inequality and deduce

<t
~ Nk26%(u,v)
9AHy +2

Py (u, vy k)P (é\d(u, v) > (1 + k)ba(u, v)) + bexp (—eaNK*03(u, v))

aq

¢d 274 AAHgt
SWJF[JGXP( i s VR Lg A )

- Q4Ha +2
Similar arguments apply for bounding p;; (u,v; k). The proof of Lemma S.1 is now complete. O
In view of the proof of Lemma 1, let us define
Ba=1/2 if d<§—2, and [s_1=H, (S.12)
L2, = [(vd+1X(t))2] €[ agsyda], 1<d<d—1, (S.13)
and
S2 = 2\/Ags1\/Gass +Gase if d<5—2, and SZ, =2/ag\/L +S2+L +S2. (S.14)
Lemma S.2. 1. For any ¢ € (0,1) and 0 < A < As such that

Li,t log(2)

AuSE < =T,

V1l <d<§,
with Bq, Lz)t and S% in (S.12), (S.13) and (S.14), respectively, then

‘ﬁd,t —Hayl<p/2, VI<d<s.

2. Let1 < d <9, and let H € (0,1] such that |H — Hg4| < ¢ < 1. For any ¢ € (0,1) and
0 <A < A such that 5§A2Bd—2sa < /3, we have

Oa(t1,t3) — LgA*Har
A2H

< /3.

Proof of Lemma S.2. 1. Let 1 < d < § be a fixed integer. From the proof of Lemma 1 and condition
(4), we can rewrite O4(u,v), with u,v € [t — A/2,t+ A/2] C [t — As0/2,t + Ns,0/2] as

Ba(u,v) = L2 Ju — v[74 (1 + pau, v)),
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where [pg(u, v)| < (Sg.¢/Las)” A%, Since our conditions imply Azﬂdsgyt < tht log(2)/4, we deduce
|pa(u, v)| < 1/2. Using the fact that = + log(1 + z) is Lipschitz for x € (—1/2, 4+00), we get:

|log(1 + pa(ty, t3)) —log(1 + pa(ts, t2))|
log(2)

< lpa(ti, t3)| + |palts, t2)]

- log(2)

2
< 2 (Sd> AQBd )
~ log(2) \ La

We then deduce from the condition on ¢ that |f~Id7t —Hg| < /2.
2. By condition (4), if A%%=2052 < 4)/3, we get

\ﬁd,t —Hgyl =

Oa(t, ts) — L7 A
A2H

< 53A26d+2(Hd,t_H) < 53A2ﬂd—2w </3.

O

Lemma S.3. Assume that the conditions of Proposition 1 hold true. For any d € {1,...,d}, there
ezists a universal positive constant b, and positive constants fq and gq depending on dependence measure
such that the following inequality holds:

fa

P (|Hd,t — Haql > w) < N2 AtHa:

+ 4bexp (—ng<p2A4Hd«f).

Proof of Lemma S.3. According to condition (S.6) and Lemma S.2, we have that |Hg, — Hy,| < ©/2.
It then follows that,

P(Has — Hagl > ¢) <P (|Has = Had| > 0/2)
Oa(t1,t3) 0a(t,12)

P |log 0
( ed(tlat?)) ed(tlatQ)
P <§d(t1,t3) Oaltr,ta) 2*") +P (ad(tl’ts) Cllnt) 2w> |

IN

> cplog(?))

IN

Oa(t1,t3) Oq(t1,t2) Oa(t1,t3) O(ty,12)
By simple algebra and the definition of the functions p;' and p; introduced in Lemma S.1, we get:
P(|ﬁd,t — Hay| > @) < pf(t1, ts; 2¢/2 1) +p, (ti,t3;1 — 27¢/2)
+ ) (t1, 122972 — 1) + pg (t1,t2;1 — 27%/2), (S.15)
provided that ng(\) < [2%9/2 — 1|04(u,v) < 1 which is guaranteed by condition (S.7) with Cy

5B~12(2y/@g + vVB) ' log(2)/2'1/2. To see this, first note that for any ¢ € (0,1), [25%/2 — 1]
@log(2)/2'/2. Thus, by (4) and (S.6), we have

IN I

(25972~ 1]04(u,v) < (510g(2)/2°?) L3, 020t <1 as A0,

Second, (D2) entails that ng()\) < 8 (2\/601 + \/E) B'/2)\=7/2, Gathering the two bounds, we obtain

-1
AT/ < (53—1/2 (2\/52 + \/E) log(2)/211/2> gL A?Har,

which is exactly the condition (S.7). Now, with t; = t2 or ¢, = t3, we have

24Hd,t+2ad

(2772 — 1L}, AT

py (t1, 152972 — 1) < N + bexp ( 2 N(2¢/? - 1)2L§7tA4Hd»f') .

- Q4Ha +2
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Since logz < z — 1 for any 2 > 0, we get log(29/?) < 2¥/2 — 1. We obtain,

24Hatdq, /log(2)? eqlog(2)?
+ Co0/2 d/ 108 d 108 274 A4Hg,
pd (tl,tk, 250/ — 1) S N¢2L§ tA4Hd,t + beXp <T4I‘IW1NSO Ld,tA d > .

Setting fg = 2*4+7%a,/(log(2)2Ly,) and g = eaLy , log(2)?/24a+F4 we finally get:

fa/4 t
(0t 271 = 1) < i o+ bexp (—gaN@PATH).

The same reasoning can be applied to bound the other three terms on the right-hand side of (S.15).
See also the arguments used in the proof of Theorem 1. O

Proof of Proposition 1. Note that:

P(Ja: — at| > @) §P<|at — | > cp,gzé) —HP’(g;é 5)
< P(‘ﬁéyt ~Hy| > ga) 1@(3< 5) +P@G > 4)
5—1
> go) +d_0]P’<

)
< ZP (’Hd,t —Hgy
d=0

For the last inequality we use the fact that, for d < § we have Hy; = 1, while Hs; < 1. Since
1 — Hs+ > 2¢ for sufficiently large A, repeatedly applying Lemma S.3, we have

fs
N<p2 AAHs,

P (‘ﬁé,t — Hs,

ﬁd7t<1—@>+P(ﬁ57t>1—g@)

> cp) +P (‘ﬁé,t — Hsy

).

P(la; —ae| > p(N)) < + 4b exp (—495N¢2A4H5,t)

+ Z 2A4Hd +4bexp (—gaNp>AtHer)

Setting § = max{fo,...,fs} and g = min{go,...,gs}, after changing 4b to b, we get:

f

P - ol > ) < 240) |-

+ bexp (—gN<p2A4)] .

Proof of Proposition 2. First, we may rewrite Ez,t — L7, as the sum of three terms such that :

22 2| o ’é\d(tbt?)) - 9d(t1,t3)‘ ’ad(thtS) — L A
‘ d,;t — d,t’ = A2ﬁd + A2ﬁd

13, [1 - A

It then follows that,

P(|23, - L3,

On the event ’ﬁdﬂf - Hdﬂg‘ < ¢, using (S.8) and Lemma S.2, we get

) <P (’ﬁd,t —Hg,

T2 2
<, ‘Ld,t - Ld,t

> 1/1) +P (‘ﬁd,t —Hgy

- o).

|0a(t1,t3) — L7 , A4
AQﬁd

<¢/3.
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Furthermore, the function x € [—¢, p] — A2® is Lipschitz. Consequently we get,
L |1 — A2 < /3,

provided ‘ﬁd,t — Hg | < ¢ and condition (S.9) holds true. We then deduce that,

~ P Bult1,t3) — Oa(te,t
P (L3, - L3, > ) gP(‘Hd,t—Hd,t‘ < p, falt Z)Qﬁd:l( 1, t3)] >¢/3>

+P (’ﬁd,t - Hd,t‘ > @) ,

<P (’ﬁd,t —Hgs| <o, ’@l(h,tg) - Qd(tl,tg)’ > AQHd,t+2(pw/3)

+P (’ﬁd,t — Hd,t’ > 80) )
<P (’é\d(tl, t) — Gd(tl,tg)‘ > AQHd,f“‘Pz/J/?,) +P (‘ﬁd,t — Hd,t’ > ap) .

The second probability of the right-hand side of the last inequality can be bounded using Lemma S.3
and the first probability using Lemma S.1, provided that n4(\) < A2Hd.:+2¢4),/3 < 1 which is guaran-
teed by condition (S.10) with Cy = B~Y2(2y/@q+ vV B)~'/(3 x 2). In fact, note that the Assumption

(D2) implies that n4(A) < 8 (2\/671 + \/E) BY2)\=7/2 hence

A2 < BTY2(2\@g +VB) /(3 x 2 A% A et <1 as A 0.

Proposition 2 then follows:

~ Cd
P(|Fs — 23] > ¥) < gpatmres + 0w (CuNy?ANT)
fd 2 AN4H
+ N2AIT + 4bexp (—gaN? A1),
where ¢q = 9ay4 and [3 = ¢4/9. O
S.3 Proofs for adaptive estimation

In this section we provide proofs for the results in Appendix C.

S.3.1 Technical lemmas

Lemma 7. Assume that X € X(H,L;J) and let X,,(t, h) be defined as in (17). Assume (H1) to (HG6),
(H11) and (H12) hold true. Then :

1. {Bn(t;h)} and {V,(t; h)} are conditionally independent given {M,} and {T},;} ;
2. {V,.(t; h)} are conditionally independent given {My,} and {T,;} ;
3. Enr [V2(th)] < {1+ o(1)}o?(t) maxi<i<ar, Wa,i(t; h), with o(1) uniform with respect to h €

HN7
4. Eprr [be(t; h)] < L2h%Hep,, (t; h, 2Hy ) {1 + o)}, with o(1) uniform with respect to h € Hy ;
Proof of Lemma 7. By definition, we have

M, M,
Bu(t:h) =Y Woi(t {Xn(Tni) = Xa(t)}  and  Vi(t;h) = eniWni(t; h).
=1 =1

1) Direct consequence of the definitions and assumption (H5).
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2) Direct consequence of the definitions and assumption (H4).

3) By elementary calculations and (H4), and since |02(T},;) — 02(t)| < Ly|T,,,; —t| for some L, > 0,
uniformly with respect to h, we have

1<i<M,

My,
Enr [VE(R)] = W2, (4h)0(Tn,) < {1+ 0(1)}o?(t) max W,.(th).

4) By Jensen’s inequality,

£

B2(Eh) < S Wi () {X0n(Ths) — Xu()}2

Then condition (4) in (H6) implies

M’IL
Earr [B2(61)] < L2 Wi (t )| T — 27 x {14+ n2P052/12)
=1

= L}h*b, (t;h, 2H,) x {1+ W20 S5 /L7 ).
Moreover, for any t € I and h € Hy, by (H12) we get
0 < h?P52/L? < (maxHy)*™ S2/L — 0.

The statement then follows. O

Lemma 8. Assume that the assumptions (H1) to (H5), and (H12) to (H14) hold true.
1. For anyt € (0,1) and h € Hy such that j;tj: g(u)du < 1/2, we have

1- exp (_an(t§ h)) < E[ﬂ—n(t; h) ‘ Mn} < 1- exp (_2an(t; h)) ) V1 <n< N.

2. There exists two constants Q# and éu such that for all h € Hy,

B[Py (£ h)]

Cull o} = na

S 611{1 + 0(1)}7

and Py (t;h) = E[Pn(¢t; h)[{1 + op(1)}, with o(1) and op(1) uniform with respect to h € Hy .
8. Moreover if (H16) holds, constants C., and C., exist such that Vh € My,

E[Pp (s, t; h)]
(N — £) min(1, (Ah)2)

C{1+o(1)} < < Cy{l+o(1)},

and Pn ¢(s,t;h) = E[Pn (s, t; h)[{14+0p(1) }, with o(1) and op(1) uniform with respect to h € Hy .

Proof of Lemma 8. 1) For simplicity, we omit the subscript n, and write M and =« (¢; h). Since {T,, ;}
are independent by (H3), we have

t+h

Efr(t;h) | M] = 1— (1—p(t:h)™,  with p(t:h) = /t_h o(u)du.

We remark that, using the Holder continuity of g (H14), we obtain p(t; h) = 2hg(t){1 + o(1)} where
o(1) converges to 0 uniformly with respect to h € Hy. Thus, for a sufficiently small max Hy, we can
assume that p(t;h) < 1/2, Vh € Hy. Using the following elementary inequality,

———— <logl—uw) £ —u, Yue(0,1),
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we deduce that for any u € (0,1/2), and for any M >0
1—exp(—Mu) <1—-(1—u)" <1—exp(—2Mu).
Replacing u by p(¢; h), the first statement follows.

2) Note that Py(t;h) = ij:l 7 (t; h) is a sum of N independent Bernoulli random variables, and
E[Py(t; h)] = NE[r(t; h)]. Assumption (H13) implies that for all u € (0, 1), exp(—cu) < E(e™*M) <
exp(—cu). Then, by 1) above we get,

E[P,

1= exp(-M(1 +o(1)2g(0)e) < TN <4 oAt + 0(1)20(07).

If Ah > 1, the following inequality hold by (H14),

If A\h < 1, we remark that if C > 0, 1 — e~ > (1 — e“)u for all u € (0,1) and that 1 —e™® < z for
all z € R. We deduce by (H14),

{1 —exp (—2¢,c) } Ar(1 +0(1)) < w

< Ah2ege{1+ o(1)}.

Gathering facts, the double inequality in 2) follows by setting C n = 1 —exp (*QQgg) and 6# =
max(1,2¢,¢). Next, using the left bound of this double inequality and Chernoff’s (see, for instance,
Vershynin, 2018, Section 2.3) exponential bound, for any 0 < n < 1,

P (‘ Pn(t;h)

EPn(th)] 1‘ g ”) < 2exp (—n"E[Pn (t: 1)]/3)

< 2exp (—C,,n° N min(1, Amin Hy)/3) .
Since Hy is a grid of at most (INA)¢ points for some ¢ > 0, we deduce that

Pn(t;h
P(sup N(7 )
heH N

E[Py (8 h)]

- 1‘ > 7]) < 2(NX)°exp [—QMUQNmin(l,)\min’HN)/?)]

< 2exp {—N min(1, Amin Hy) (0#772/3 _ clog(NA) )] .

N min(1, A\min H )

Since by Assumption (H12) N min(1, Amin#Hy)/log(NX) — oo, we deduce that Py(t;h)/E[Py(t;h)]
converges in probability to 1 uniformly over h € Hy.
3) Let |z] denote the largest integer smaller than z. Note that, for a fixed ¢, we can decompose

{41
Py (s, t;h) = Z ($: h)Tnpe(t; h) = ZPN“sth

where
L(N—=£=1)/(£41)]

Pyoi(sitih) = > T (0414183 W) T (04 1) o1 (E R).

n’=0

Each Py ¢,(s,t; h) is a sum of independent Bernoulli random variables because, by definition and the
condition we imposed, the m,(s;h)’s, 1 < n < N, are independent. Moreover,

E[Pn.ci(s, t; )] = {L(N =€ =0 /(¢ + 1) | + 1}E[m1(s; h)]E[m116(E; h)].

By arguments as used for 2), constants C' and C exist such that

o2 < E[PN,Z,l(Sv t; h)]

= T A{N=2-1)/(£+1)] + 1} min(1, (AR)?) <C, 1<1<¢.
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By little algebra, summing over the integers [ between 1 and 41, we get the first part of the statement.
For the second part, using Chernoff’s exponential bound (see, for instance, Vershynin, 2018, Section
2.3) and the fact that Hx is a grid of up to (INVA)¢ points, for each 1 <1 < ¢+ 1, we deduce that

Prngi(s,t; h) ‘ )
N 1 >
E[Pre(s, 6; h)] "

F <hS€l?1-I[)N
< 2exp [— (N = £—1)/(£ +1)] min(1, (Amin Hy)?)

cn? clog(N))
. ( 3 [(N—¢—)/+1)] min(L(AminHN)z))]

Using Assumption (H16) and summing over 1 < [ < ¢+ 1, the statement follows by elementary
algebra. O

Lemma 9. Let assumptions (H1) to (H7) and (H14) hold true. Then, for any t € I, 52(t) =
o?(t){1+ op(1)}.

Proof of Lemma 9. For any t € I,
XN
G2 (t) — o%(t) = N nEZI{Zn —EZ,} +{EZ, — 5*(t)},

where Z,, = {Y,, i) — Yn,i(t)+1}2/2. Thus,

P ([5°(t) — o®(t)] > 1) < Q1 + Q2
where

N
Q=P (Z |Z,, —EZ,| > Nn/2> and Q2 =P (|EZ, —o*| > n/2).
n=1
Study of Q3. Using the assumptions (H3), (H4) and (H5), we have

0<EngZy,—0*(t) = [EnmrZn — 0> (t)] = Enr{X0(Thict)) — X (Thicey+1)}>/2
1

= 5Emr { X0 (Thict) — Xn(Thicty+1) 14 + 1]

1 _
< iEM,T {Xn(Toity) = Xn(Tnjiry+1) 2 1a] + 2SUII>E (X2 (u)] P(A),
ue
where A = {{Tn,i(t) - Tn,i(t)+1| < Aop} N {Tn,i(t)aTn,i(t)+1 S J} with J and A070 the set and the
constant from condition (4) in (H6). Then constants C; and Cy exist such that
2Ht:| —

0<EZ, —o2(t) < C1L2E [\TM-@) ~Thia| | + CoP(A).

Since the T;, ;’s are independently drawn and admit a density g bounded and bounded away from zero
(H14), it is easy to check that the bound of EZ, — o%(t) tends to zero, provided A — oo. See also
(Golovkine et al., 2022, Section F) for the moments of the spacings between the ordered T, ;.

Study of Q. By (1),
Yoitt) = Xo(Toiery) + 02 ((Tosig))ensice) 1<n<N.

The infinite sequence {X,,,n € Z} is stationary. Recall that in our setup, Thi 1<i<M,,1<n<N
is a triangular array, with M, ..., My independent copies of M which has a distribution which changes
with IV, while the T}, ;’s are independent copies of T' with a fixed distribution. Thus, for any N > 1,
the finite sequence {(, = (Th,i(t); En.ir)), 1 < n < N} is iid.d., see assumptions (H3), (H4) and (H5).
This implies that the finite sequence {Y), ;+),1 < n < N} is also stationary. We next complete these
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finite sequences to infinite ones, {(,,n € Z} and {Y,, ;+),n € Z}, by generating independent M,, from
the same distribution as M, ..., My, and independent copies (Th,.1,6n1)s - - - (Tn,p,, s En.a,, ) of (T €),
for any n & {1,..., N}. Using the MA representation of {X,}, see (6) in Definition 3, we then rewrite

Yo
Yn,i(t) = f(§n7£n717 .. )(Tn,i(t)) + 02((T i(t ))En i(t) = g ((Cn7§n)(€n717§n71)> .. ) 5 n Z 17

where {(¢,,&n),n € Z} is an i.i.d. sequence taking values in a measurable space S = {[0,1] xR} x S
and g : §* — C a measurable function. A coupled version of Y,, ;) is then

Y = X0 (Toa) + 02 (Tni)eniy,  m>1,

and we have

n,i(t)

Y(m) - Kz,i(t)’ < HXT(Lm) - Xn“om

and deduce that {Y}, ;),n > 1} is L* — m—approximable. The same facts hold true for Yoi)+1,n >
1}. This entails that {Z,},, is L? — m-approximable, since

1Zn = 251 <2 (IXnlloo + XS oo ) 1X5™ = Xllo.
By Cauchy-Schwarz inequality and Jensen’s inequality, we get

vo (20— 20 ) < ava(IXullo)va (IXE7 = Xollc)
Condition (H7) then implies

:iv ( m))2/3<oo.

=1

Applying Nagaev’s inequality, see Lemma 5, constants co and ¢} exist such that

N 3 2
deo (V2 +19( 2, —EZ,
]P’(g |Z,, — EZ,| >N77/2> < cyexp <—%N772)+ 2 ( ]2\;772 )?)

n=1

N 2
—|—2exp<— oL >

Ay(Z, —EZ,)?

This shows that @1 tends to zero. The proof is now complete. O

Lemma 10. Assume the assumptions (H1) to (H5), and (H11) to (H14) hold true. For each N > 1,
we have
0 < max Wy i(t;h) < Sy w (h)min (1,(AR) ™), 1<n <N,

where Spw(h) > 1 is a random variable with the mean and the variance bounded by constants which
do not depend on h and n. Moreover, the variables {S, w(h),1 <n < N} are independent.

Proof of Lemma 10. By construction, the weights of the NW estimator with a non-negative kernel
satisfy

0< min min W, ,(t;h) < max max W, ,(t;h) <1, Vtel,h € Hny.
1<n<N 1<i< M, 1<n<N 1<i< M,

It thus remains to study more carefully the case where A\h > C' for some constant C' > 0. Using the
fact that the kernel is bounded and bounded away from zero on [—1, 1], for each 1 <n < N, we have

2025, Wnaltih) < = SOty
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where
M

7= inf K(t and S(M,,t,h) = I{|Tr —t] < h} <EA
inf K (1) () = 31T = < 1)
Note that S(M,,t, h) is an integer-valued variable, non-decreasing as function of h. Conditionally
given M;, the variable S(M,,t,h) is a Binomial variable with parameters M,, and

(t+h)A1

P(Ti—t <h) =

g(u)du > h x inf g(u) > h x c,.
(t—h)v1 u€l

Let us now recall a result of Chao and Strawderman (1972) : if S is a non-degenerate Binomial random

variable B(n,p), then
g1y = Lo S
E[(1 = h =1-—p. .16
(1487 = b, whereq=1-p (5.16)
In our context, we have S = S(M,,t,h), n = M, and p = P(|T,; —t| < h). From (S.16) and
Cauchy-Schwarz inequality, we deduce

1 1 1
1+np§E[(1+S) ]gm.

(S.17)

On the other hand, we can write
1 1{S > 1} 1 [1{S > 0}
E|l——| =P(S = E|l———| >P(S= “E|———
[1+s} (5=0+ {S(1+1/S)} ZPE=0+3 [ s |

and

]E[lis} :]ID(S:O)JrE[M} g]p(szo)juE[“‘Si;O}]

Using (S.17) and the fact that, in our context, np and Ah have the same rate, we deduce that constants

¢1, ¢y > 0 exist such that

c1<E{]l{S>O}} <c72’

np — S ~ np
provided Ah > C and the constant C is sufficiently large. Indeed, the upper bound is obvious. For the
lower bound, let us consider C' > {¢,c(e —1)} . We then have

E[M} >IE1[ ! }—P(Szo)

S 1+5
1
=1 o (1—p)" > T exp(—np) using log(l —z) < —z, Vo < 1
1 -1 -
> S using exp(—z) < £ ve>o0
14+np np T
€1
- np’

for some constant ¢y. Replacing S by S(M,,t, h), and using the independence between M and T, we
get

c1L,w <E ]I{S(Mn,t,h) > 0} < CQ7W’
AR T S(M,,t, h) Y.
where ¢1 w, co,w are positive constant, depending only on C, ¢/, ¢y, ¢, ¢. Similarly, it can be shown
that a constant c¢};, exists, depending only on C, ¢, and ¢, such that

L{S(My, t,h) > 0}] _ ¢
E{ 20,0, 1, ) ]Su%f

The result then follows by defining
Spw (k) = max {1, (AR)(| K |oo/T)L{S(M,,t,h) > 0}S™ (M, t,h)},
because under our assumptions, the {5, w(h),1 < n < N} are clearly independent and we showed

that their mean and variance are uniformly bounded with respect to h € Hy. O
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Lemma 11. Assume that the assumptions (H1) to (H5), (H7) for p > 8 and (H12) hold. For each
h € Hy, {mn(h),n > 1} be a sequence of i.i.d. Bernoulli random variables which is independent of
{Xn,n € Z}. Then, for anyt € I,

e Z (W) X2 () =E [m (W)X @®)] {1+ op(1)} uniformly with respect to h € Hy.

Proof of Lemma 11. First we decompose the following sum in two terms

Z?Tn =71 N(h t)+Z2N(h t)
where

N
Zy v (hit) [rn (M} X5 () and  Zon(hit) %Z n(0)-

HMZ

Our assumption clearly entails Zy n(h;t) = E [m, (h)] E [X2(t)] {1+ op(1)}, uniformly with respect to
h € Hy. To study the uniform convergence of Z; n(h;t), we first condition on the realization of the
sequence {X,,n > 1}, derive an exponential concentration bound for the weighted sequence of , (h).
Finally, we integrate this bound on a suitable set of realizations of {X,,n > 1} with high probability,
and provide a bound for the complement of this suitable set.

For the exponential concentration bound for the weighted sequence of 7, (h), we use the following
general Hoeffding’s inequality, a suitable result for our study (see Vershynin, 2018, Theorem 2.6.3). Let
{U,,n > 1} independent copies of a standardized, sub-gaussian variable U. Let a = (a1, ...,ax) € RY
be a non-random vector. We then have

N
IED (
n=1

ZanUn >
where C' > 0 is an absolute constant, and K = inf{u > 0 : E(exp(U?/u?)) < 2}. When U, =
Tn(h) — E [m,(h)], we have

Cv?
U) S 2€Xp |:_I(2||(1||§:| 5 v’U > 0, (818)

E(exp(U? /u?)) = exp(E [ma(h)]* /u?) x {1 = E[ma(h)]} + exp({1 = E [ma ()]} /u?) x E[ma ()]
> 1+ {exp({1 = E[ma(h)]}*/u?) — 1} x E [m, ()],

and thus deduce
1—E[m,(h)] < 1
\/log 1+ 1/E[m,(h Vlog (2)

We apply (S.18) with U,, = m,(h)—E [m,,(h)] for each h € HN. Since {7y, (h)} and {X,, } are independent
sequences, and using Boole’s (union bound) and (H12) inequality, we deduce

N
P (1?15) S {mah) — B [ra(W}X20)| 2 No | (X0, X3(0) = a)
2,2
< 2exp [clog(N)\) - fg?ﬁ(ﬂ@

We next define the event A = {(XZ(t),..., X% ), |(X2(t),..., X% (1))||3 < Nc}, for some real number
Nec such that ¢ > E[X}(¢)]. Then, by (H7) and the Nagaev inequality stated in Lemma 5 we have

N A 4 A e2 (9 + ||X (1) — E[XE(1)]13)
P(A) =P (Z{Xnu) — E[X{(t)]} > N(c - E[X] <t>]>> < N~ EXI0]?

n=1
, exN(c — E[X} () e2N(c — E[X3 ()
o (‘ 7 ) e (‘ X300 - E[le@nn%)’
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where ¢y and ¢, are two positives constants and ¥ corresponds the dependency coefficient. Thus
gathering facts, we obtain
>N 11)

( sup
heH N
Z{m —E[m,(h)]} X2 (t)

sup
heHN n=1

Z{Trn (h)]}X'rZL(t)

n=1

> Nv ‘ 1X2(8), ..., X3 )2 < Nc) P (A) +P (A)

< 2exp {CIOg(N)\) - Clog(f)NUQ] L e (P +IXT() ~ EXG @)

N (e - E[X{(#)])?

CzN(C—E[Xf(t)])2> 2N (¢ — E[X{ (1)])?

+ chexp (— +2exp | —

? 03 X1 () — E[XT(®)][I3

The proof of Lemma 11 is now complete. O
S.3.2 Mean estimator: risk bounds

Lemma 12. Under the assumptions (H1) to (H7), (H11) and (H12), we have
Enr {fin(tsh) — p(0)}?] < 2R, (6 R){1 +o(1)},
with o(1) uniform with respect to h € Hy and

R, (t;h) = LZR*™B(t; h, 2H,) + o2 (t)V . (t; h) + D, (¢; h)/ Px (t; h).

Proof of Lemma 12. Let fin(t; h) be the infeasible mean estimator

N
Zth

fin(t:h) =

Then
Enr [{fin (t; h) — p(t)}?] < 2G1(t; h) + 2Go(t; )

where
Gi(t;h) = Earr [{in (G h) = An(0)Y?] and  Go(t;h) = Enr [{En (8 h) — p(1)}?] .

Bound for G;. We rewrite

N
Zth (t:h) +

ﬁN(t; h) ,U,N(t h t h t h)

HMZ

Using (C.1), Cauchy-Schwarz inequality, the fact that 7, = 72 and Lemma 7, we have

1

N (t;

1
P2(t:h)

<{1+o0(1) 1;{ ThPUB(t b, 2H,) + 02 (1) V(s h)

G1 (t; h) S

N N
) > walt; Ea T B2 (£ h) + >t EM V2t h)
n=1 n=1

with o(1) uniform with respect to h € Hy.
Bound for G5. Let us first note that

Py (t;h)Ga(t; h) = E [{Xo(t) — u(t)}?]

N-1 Nt _—
+2 Z:l E [{Xo(t) — p(t) H{Xe(t) — p(t)}] {; W} D, (5 h).



Now we show that D, (t; ) is finite under the ]Lé — m—approximation. After completing the sequence
{X¢(t), ¢ € Z}, we first have that D, (¢; k) is bounded. Indeed, taking absolute values and using the fact
that the autocovariance function is absolutely summable (see Hérmann and Kokoszka, 2010, Lemma
4.1), we get

D,.(t;h) < B [{Xo(t) = p(t)}?] + 2D [E[{Xo(t) — p(t) H{Xe(t) — u(t)}]| < oo
>1

Second, the process { Xy, ¢ € Z} is L} —m—approximable and the L} — {—approximation of X, is Xy).

It is easy to show that for each ¢ > 1, X éz) is independent of Xy, see condition 3) in Definition 3.
Therefore, we get

E[{Xo(t) - () HXe(t) = n(t)}] = E [(Xo(t) — u(t) (Xe(t) - X' 0))]

Then, by Cauchy-Schwartz inequality and by (H7), we get

D, (t:h) < va (Xo(t) = (1)) § va (Xo(t) = (1) +2 3 wa (Xut) = X0 (1)) p < o0.
>1

This conclude the proof. O

Lemma 13. Assume the assumptions (H1) to (H7), (H12), (H14), (H15) hold true. Let

~

Ryt h) = L2R2AB(t; b, 20,) + 62 (6)V,u (8 h) + Dy (t; h)/ P (t; ).
Then R

Ru(t; h)
Ru(t; h)

heEH N

- 1‘ == O]p(l).

Proof of Lemma 15. Lemma 9 states that 62(t) = o2(t){1 + op(1)}, for all t € I. Moreover, 72(t)
does not depend on h. Since by (H15) L; concentrates to L; > 0, it thus suffices to show that
h*He = p2He {1 4 0p(1)} uniformly over the range H . For any € > 0, we can write

P ( sup ‘hz(ﬁt_Ht) — 1‘ > 6) = Q3+ Q4,
heH N

where

Qs =P < sup [n2FH0 1| > e[ H, — Hy| < w) :
heHn

Qu="P ( sup ‘hQ(ﬁ‘_H‘) — 1’ > €, |I§t — Hy| > go) )
heH N

Without loss of generality we consider 0 < h < 1, and we define the function x — g(z) = h?* which is
defined and continuously differentiable on R. Then if |H; — Hi| < ¢, we get,

‘huﬁrfm _ 1] < 2|log h|h™**|H; — Hy|.
and then,

{ sup ‘hz(ﬁ‘_H‘) - 1‘ > ¢, |Hy — Hy| < @} C {(minHn)"?* |log ((minHy) )| > €} .
heHn

Choosing ¢(A) = C,, (log A)~? for some constant C, > 0, thanks to Assumption (H12), which implies
log(minH )/ log*(\) — 0, we have

(min Hy) "2 = exp {—QCS(, 710g(m1n ) } —1

log*(M)
Since the continuous function = — xlog(x), > 0, vanishes at © = 1, we deduce that Q3 = 0 for
sufficiently large values of A. On the other hand, (H15) guarantees Q4 — 0. O
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S.3.3 Covariance estimator: risk bound

Lemma 14. Under the assumptions (H1) to (H6), (H7) for p > 8, (H11) to (H14), and (H16) we
have
Earr [Giva(s,t:h) = e, 0F ] < 2R, (s, 65m){1 + 0 (1)},

with op(1) uniform with respect to h € Hy and
R (s,t;h) = 3v3 (X114(t)) L2 =B(s|t; h, 2Hy, 0) + 303 (X1(s)) LER*B(t|s; h, 2Hy, £)

T3 {0P ()R Xy o)V (5,15 1) + o (O3 (X1 () Va5, 1)} + 302()02 (1) (5,15 )
+D(s,t;h)/Pne(s,t; h).

Proof of Lemma 14. Recall that

M’IL

N—/
n (85 h)Tnpe(t; b .
B(t]s; h,a,0) = 3 (;NZ(Z I-Zzi) Dbcaltsha) with b(tiha) =3
n=1 AT i=1

(0%

Thi—t
— | W,.(t; h).

h

Recall that g ® f(s,t) := g(s)f(t). Let Yn¢(s,t;h) be the weighted mean of the unobserved curves
X, ®Xyq4p,n=1...N, e,

N—
’)/Ng(S t; h) PNg 5.t h Z 5 h 7Tn+l t h)X ( )Xn+/(t)

The quadratic risk of Yy ¢(s,t; h) is then bounded by two terms :
Earr [{n,e(s, t; h) — 7@(5,1?)}2} < 2Gi(s,t;h) + 2Ga(s,t; h),
where
Gi(s,t;h) =Emr [{%\M(s,t; h) —An.e(s,t; h)}z] , Ga(s,t;h) =Em 1 [{H’Yi]\{’g(s,t;h) — w(s,t)}ﬂ .

We next derive bounds for G; and G5, respectively.
Bound for G;. We decompose 7y — ¢ as Yn ¢(s,t;h) — v e(s,t; h) = a + b + ¢, where

Nt
1
Pr (s tR) ) sh) X B (4
¢= PNZ(S t; h)nz:l "(87h)ﬂ-n+[(tah) n®( n+l+‘/n+€)(87(t,h))7
] Nt
P (s, t; h) " ;h n t;h By, Va Xn ;h;tv
= o i) D " AR (B Va) © Koyl (551
1 Nt
o P (s, t:h) 4 T (85 1) g e (85 1) (B + Vi) ® (Bne 4 Vare) ((s: h); (5 1))

\ |
-

Since (a + b+ ¢)? < 3(a? + b% + ¢?), it is sufficient to control the expectations of a?, b% and ¢. Using
Lemma 7-(1) and (2), we have

2

2

1 —L

Eur (0%) = Earr (PNg(s,t,h) mi(8; h) e (t; ) X5 (s )BiJrg(t;h))

i=1

N—¢
wasth ;” (5 )iy o (8 W)EXE () Enr,r Vit o (8 1),

2

—L

—_

2
Ewm,r (6%) = Enr ( 73 (53 h) i e(t; ) Bi(s;h) Xiyo(t ))

Pn (s
N—t
Zw (85 )7 (6 W) Engr Vi (s; R)EXZ ().
=1

& h)

7

1

Nesth
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By Cauchy-Schwartz inequality for sums we get,

N—¢ 2
(Z (83 h)ite(t; h) Xi(8)Biye(t; h))

i=1

N—t N—t
< <Z (83 h)mite(t; h)X3(5)> <Z mi(s; )mive(t; h) B o (t; h))

i=1 i=1
Let p;(h) = m;(s;h)miye(t; h). We apply again the idea used in the proof of Lemma 8-(3), that we

decompose Zij\;_le pi(h)X?(s) in £+ 1 sub-sums such that in each sub-sum the p;(h) are independent.
Applying next Lemma 11 to each sub-sum separately and gathering the facts, we deduce

Zp = (N [m (s: b)ym ot ) X3()] {14 0p(1)} = B [Py (s £ W E [X ()] {1+0r (1)},

and the op(1) is uniform with respect to h € Hy. From this and Lemma 8-(3), we next get

N—¢ 2
(Pzw G > mils; )it h) Xi(s) Bia(t; h))
1=1

Z mi(s; )i o(t; h) B2, (t; )
=1

E[X

=11 1}
{+OP( PNgSth

N—¢
> wils; h)mise(t h)BY (£ h),
=1

uniformly with respect to h € Hy. We thus have the bounds

N—¢

1+o V2 X
En,r (a?) < { P“]’;r([zi t(h)l( 5)) > wi(s; h)miso(t h)Ear e BEy ot h)
) ) Z:l
N—¢
i(s:h)mige(t; W) EX;(s)*E 2 ,(t;h),
P]%Msth);ﬂs )7ie(t; W)EX; () Earr Vi o (£ h)
Y4
{1+ 0p(1)}3(X140(t)
Earr (02) < Z mi(s; B)miso(t; W) Epr B2 (s;h)
NZ(S7t7h) i—1
N—¢

: ; : 2( . 2
+ BB 2 8 el BV WEXE (1)

Finally, by Lemma 7-(3) and (4),

14 op(1)}L2R2He 2 (X (5)) v
e o S st )b, 20
AT i=1

Enr (a®) <

N 14
{1 +o(W)}o?(t)r3(Xa(s _
i Sl el ), s Wosa(t)

= {1+o0p(1)} [Vz (X1(s))? L2h*eB(t|s; h, 2Hy, €) + 02 (8)w2(X1(s))Va2(s, 15 h) |

N ¢
{1+ op(1)} LR o3 (X 40(t)
En,r (67) < Z (s h)mige(t; h)bs(s, b, 2H,)
PN75(871§ h P
N ‘
1+4+o0(1 X
+ {1+ o 1)3}20 (( ):Qh() et Z mi(8; )i (t; h)ei(s; h) nax \Wzk(s h)|
N\ ™ =1

{14 om0} [ (Xaselt) L2 B (sl 2 0) (s R X0V (5 1)
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and the op(1) factors are uniform with respect to h € Hy.
To derive a bound for Eps 1 [c2], we decompose this expectation as follows :

2

N—t
1
En, (CQ) =Epr (PNK(Sth) Z 7 (85 ) Tiqe(t; h) Bi(s; ) Biyo(t; h)) (S.19)
’ i=1
1 N—t
T ) 2™ 2(s3 h)m2, o (6 W) Ear 2V (53 B)Ear o Vi o (£ ) (S.20)
Nt i=1
1 N—t
m T (8§ h)7T1»2+e(t; h)EMJ“BiQ(S; h)EM TV+g(t h) (821)
N, p
1 N—t
+ P2, (s 6 h) w7 (83 )y o (6 R)Ear, o Vi (55 ) Engr B (£ h) (5.22)
N,¢ i=1
9 N—2¢
+ P2 (s, t;h) En,r(mimireBiVige) @ (TiemivaeBivacVive) ((sih); (8 h)). (S.23)
N,L\Z» ™

=1

Lemma 7 ensures that the sum of the terms (S.21), (S.22) and (S.23) are negligible compared to
Es r(a? + b2), uniformly with respect to h € Hy.
Applying again Lemma 7, the term (S.20) is bounded by,

(S.20) < {1+ o(1)}o?(s)a?(t)V, (s, t; h).
Finally, for the term (S.19), we first note that by Jensen’s inequality and the fact that z%y? <
(2t + /2,

N—¢
(S.19) < PN@ Poao i) > wi(si h)mise(t; h)Earr [BE (s; h)BE(; 1)
=1

N—¢
> mi(sih)mise(tsh) {Earr[B (s )] + Enrr[Bly (£ 1))} -
QPNg S, t h =1

To bound the 4th order moment of the bias term, we use condition (5), that is a constant € > 0 exists
such that

E(X (1) — X(v))* < € [B(X(u) — X(v))*]*,  Vu,vel.
More precisely, by Jensen’s inequality we have
M,
By(t:h) <> Wit h) {Xn(T i) — X ()}
i=1

Taking expectation both sides, and applying conditions (5) and (4) we can write

My,

]EM,T [Bﬁ(tv h)} < QZ Wn,i(t; h)E?\/],T [{Xn(Tn,l) - Xn(t)}2:|
=1
M, 2
< LYY Woi(t )| T — t*He x {14+ h?% 83 /L7 }
=1

= LI Meb,, (1 by AH,) x {1+ W20 82 )12}
We deduce
(S.19) < Cmax(L#, LH)ptmintHeHe) (B(s|t: h 4H,, 0) + B(t|s; h, 4Hy, £)} x {1+ o(1)},

and the o(1) factor is uniform with respect to h € Hy. This ensures that the term (S.19) is also
negligible in comparison of Ejs 7(a? + b2) uniformly with respect to h € Hy.
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Putting the three bounds together, we get

Gi(s,t;h)/3 < v2 (X144(t)) L2h2H=B(s|t; h, 2H,, 0) + v2 (X1 (s)) L2h*B(t|s; h, 2H;, 0)
+ 13 (X14e(1) 0™ () Va1 (5,15 1) + 03 (X1 ()0 (1) V4 2(s, £ 1)
+ ()% (t)V, (s, t; h) + uniformly negligible terms.

Bound for G5. Foreach k € {1,...,N — ¢ — 1}, we define the positive real number py(s,t; h) €
[0,1],

£
N sy ) min (53 ) Tie (6 R) i o (£ 1)

k—
t;h) <1
(s, ; P (s, 1) =

Then we rewrite Go as,

PN,E(Sv t; h)G2(87 t; h) = E(XO & XZ - 7@)2(87 t)
N—(—1
+2 ) (st h)E(Xo ® Xo —70)(Xk @ Xire — 7e) (s, 1) =: D(s, t; h).
k=1

Now we show that D(s,¢; k) is finite under the IL% — m—approximation. First, if we complete the
sequence { Xk (8)Xg+e(t), k € Z}, D(s,t; h) can be bounded by the convergent series of absolute values
of the terms in the long-run variance of the time series {Xy(s)Xy1e(t), k € Z}. More precisely,

D(s, t,h) < v3((Xo ® Xe —v0)(5,)) +2 > [E(Xo ® Xs — 70) (Xx ® Xie — 7e)(5,1)] (5.24)
E>1

Moreover, according to Lemma 2, the process {Xj ® Xyi¢, k € Z} is LE — m—approximable, and the
L2 — (k — ¢)—approximation of Xj ® Xy, is X,gk_e) ® X,i]i)e. It is easy to show that the variables
Xo® Xy and X ,ik%) R X ,Ei)[ are independent. Therefore, we get

IE(Xo ® Xo — 70) (X @ Xppr — v) (5, 1) = [E(Xo ® Xy —v) (Xk ® Xppe — X9 0 X}E:Jr)e) (Svt)‘
< va((Xo ® Xo —ve)(s, 1)) 12 ((Xk ® Xpre— X\ ® ngﬁe) (Svt)> :
We next use this in (S.24) to get

D(s,t;h) < v5((Xo ® Xo — o) (s, 1))

N—t—1
+ 25((Xo ® X¢ — ve) (s, 1)) Z 1) ((Xk ® Xpye — X,EH’ ® X,il_?a (s,t)) < 0.
k=1
This concludes the proof. O
S.4 Details on numerical study

In this section we give more details on the simulation setting of the Section 5 and report the results of
the FTS Model 1 and FTS Model 3 simulation setups.

S.4.1 Details on some quantities used in the simulations

Simple estimators of 3(t) and S, (t) using the R = 400 replications of the generated data from the
FTS Model 2 (or FTS Model 3) are

N B N 1 &
S(t)= 5> Sen(t) and Su(t) =5 Surn(t), (S.25)
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where f)ryN(t) and /S\u,r,N(t) are the r—th replication of
S = 20 S~y S w2 i)
PN(t; hN) n:1 n b 7/=1 n,t ) )

and S, n(t) = (& hn ){Xn (8 h) — n(0)},

N
™
%t = Z n
respectively.

The approximation 7 (s,t) of v1(s,t) = E[X,,(8)Xn41(¢)] in Figure 1 was obtained as the lag—1
empirical autocovariance function calculated from a very large sample generated from FTS Model 2
with ¢ = 0. More precisely, we generate R, = 30 replications of the functional time series {X,,n =
1,..., N} with a large N = 5000 and a burn-in period of 500 curves to remove the initialization effect.
In the simulation framework it is then possible to accurately approximate 71 (s, t) by

R,

FY(S t) }; Z{ _1ZXT‘TL rn-{—l( )} V(S,t)GGXG,

where G is a fine grid of design points, and X,.,, denotes the r-th replication of the curve X,,.

S.4.2 Simulation setting : FTS Model 3

The FTS Model 3 setup is based on the Individual Household Electricity Consumption dataset from the
UC Irvine Machine Learning Repository (Hebrail and Berard, 2012). It contains various measurements
of electricity consumption in a household near Paris, with a sampling rate of one minute from December
2006 to November 2010. The data of interest here are the daily voltages curves, considering only the
days without missing values in the measurements, see Figure S.1. The extracted dataset contains 1358
voltage curves with a uniform common design of 1440 points, normalized so that I = (0, 1].

We use this real dataset to build a data generation setup and simulate functional time series with
patterns similar to the voltage curves. We use the FAR(1) equation

1
Xo(w) = () + / W (t, 8)(X1(5) — (s))ds + Lo (u), (5.26)

with the mean function and the kernel of the autoregressive operator estimated from the real curves.
The Fourier expansion was used to estimate the mean and kernel functions. More precisely, we consider

t) = Bo + Zﬂkgk(t), te (0,1], (S.27)
k=1
Z 0r1Ce(s)C(t), st € (0,1], (S.28)
k=0 1=0

where {Cx, k > 0} = {1,v/2cos(27t), v2sin(27t), /2 cos(4nt), v/2sin(47t), ...} is the Fourier orthonor-
mal basis on the unit interval. The 8 and 6 coefficients are obtained by LASSO regression using the R
package glmnet (Friedman et al., 2010). For the mean function, the coefficients § are estimated using
the 1440 values of the empirical mean of the 1358 curves and ¢ on the regular grid. Similarly, for the
integral operator kernel function (-, -), the empirical covariance and lag-1 autocovariance functions are
used to estimate the 6 coefficients using a representation that we explain below; see (S.29). Figure S.1
shows the estimates of the mean function and Figure S.2 shows the level plot of the kernel function

We now explain how we derive the representation used to build an estimate of the integral operator
kernel function (-, ). Let t1,...,t1440 be the common design points for this data set. For all V s,¢ €

(0,1] and £ > 0, let
Ce(s,1) = E{(Xn(s) — () (Xne(t) — (1))},

denote the lag-¢ autocovariance function of {X,,}. By Fubini’s Theorem and (S.26), we get

1
Cl(s7t):/0 Y(t,u)Co(s,u)du
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Figure S.1: Curves and mean functions of the daily voltage curves with no missing. Right: The raw
daily voltage curves. Middle: Empirical mean function of the daily voltage curves. Right: Smooth
mean function of the daily voltage curves obtained from the model (S.27).
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Figure S.2: Level plots of covariance and autocovariance functions of the daily voltage curves with

no missing values and the estimated FAR kernel function. Left: Empirical covariance. Middle:
Empirical lag-1 autocovariance. Right: Estimated FAR kernel from the models (26) and (S.28).

Then, with the function (-, -) from (S.28), we get

4 4 1
= ZZQ’”C’“ 1(s), where Zi(s) :/0 Co(s,u)((u)du

k=0 1=0

The values Z;(-) can be simply approximated by Z() using the Riemann sums approximation and the

empirical covariance function Cy(s,u) calculated at ¢1,...,t1440 (see Figure S.2). Let
Zo(h) e 24(?51) Coltr) -+ Calt)
Zota) - Zy(ta) Colt2) -+ Calt2)
Z = . . B C - . . . )
Zo(tiaao) -+ Za(t1aa0) Co(tiaso) -+ Ca(tra40)

and © = (0,1)o<k,1<4 the 5 x 5—matrix of coefficient to be determined using the real data set, and let
C1(0@) =¢OZ", (S.29)

be the lag-1 autocovariance function we consider, computed at the common design pairs of points. The
elements of © are chosen such that C;(©) is the closest, in terms of Frobenius norm, to the empirical
lag-1 autocovariance computed at the same common design pairs.

S.4.3 Additional simulation results on local regularity estimation

Our estimation approach for estimating H; and L? depends on two tuning parameters : the presmooth-
ing bandwidth used in (9) and the window length A used in (8). The following paragraphs explain
how we tune these parameters and give the simulation results of the local regularity estimates of FTS
Model 1 and FTS Model 3.

Choice of the presmoothing bandwidth The presmoothing step consists of smoothing each curve
of the time series individually using a bandwidth parameter. To reduce the computation time, we use
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the median of the bandwidths selected by cross-validation on the last 30 curves of the series as the
smoothing parameter of all curves. Recall that given the sample points {(Y,,.1,Tn1), -+, Yaas,, Tnong, )}
of a curve X,,, the cross-validation optimal bandwidth for the presmoothing estimator (9) is defined
as

My, - 2
h* € argmin Z {Yn,i - X (Tnz)} ,
=

where X% (Ths) = XY (Th.i; h) denotes the estimator (9) that is computed without the observations
corresponding to the ¢—th design point, and the bandwidth h.

Choice of A The choice of A is a crucial point for the local regularity estimation, and extensive
empirical experiences have been devoted to the investigation of how to fix it. The study of the choice
of A was carried out independently of the three FTS Models introduced in the main manuscript. It
was based on a zero-mean FAR(1) where the innovation process is the MfBm with a Hurst logistic
function. The autoregressive operator of the process is an integral operator with a smooth kernel
function chosen such that the conditions of the Example 2 hold. The main idea of the investigation is
to use 200 replications of data generated from the FAR(1) with N curves, each with A mean points,
to compute the local exponent fIt from (11) and compare it over a chosen risk with the estimate of
H, from (8) for a given A. So, given a grid of A candidates, the best one is the one that minimises
the following relative risk. Let ¢1,t2,¢3 € J C I such that t3 —t; = A and to =t = (t; + t3)/2, then

200 7 2 n 7 2
A* € argmin —— Z (0r(t1,t2) = 0r(t1,22))° + (Or(t1,t3) — 0r(t1, 13))

A 200 & 0, (t1,t2)2 + 0, (11, t3)?

, (S.30)

where r denotes the r-th replication of the data set of N curves and A mean points per curve, 0 is
as defined in (10), and since we are in a simulation framework, it is possible to get the true X,, and
estimate

O(u,v) = N1 (Xn(0) = Xn(w)®,  w,v € {t1,ta,13}.

The investigation is carried out by testing A values for I = (0, 1]. Namely, for each A in an equidistant
grid of 30 values between 0.01 and 0.2, and for each ¢ € {0.2,0.4,0.7,0.8}, and using 200 replications
of data generated from the setups (N, \) € {100,200, 300,400} x {A\ =30, A\iy1 =X+ 15, 2 <3 <
30}, we estimate A* according to (S.30). The result is that any A* € [0.1,0.2] gives a reasonably
small risk and all A values within this interval give relatively the same risk as defined in (S.30).
Moreover, if A* < 0.1 the risk increases slowly. Therefore, we propose to chose v = 1/3 and set
A* = min{exp(—log(})!/3)},0.2}.

Additional simulation results for the regularity parameters Here we present the simulation
results in the setup of FTS Model 1 and FTS Model 3. Figure S.3 and Figure 5.4 show the boxplots
of H; and L? defined in (11) for the four pairs (N, \) at four points ¢t € I = (0,1] for Model 1 and
FTS Model 3 respectively. The results are similar to those of FTS Model 2. Indeed, the bias of the
regularity parameters estimates decreases as A increases, and the boxplot are more concentrated as N
increases. Overall, the local regularity estimators show good finite sample performance.

S.4.4 Additional results on mean function estimation

This section presents the results of the mean function estimation using data generated according to
the FTS Model 3 setup. Recall that the FTS Model 1 setup is similar to FT'S Model 2, the results
of which are already presented in the main paper, and that it contains twelve setups (H;, N, A), so
the results associated with FTS Model 1 are not reported. Figure S.5 presents the average of the risk
function R, (t;h) over 400 independent functional time series generated according to FTS Model 3,
with four setups (N, \). As for FT'S Model 2, the plots provide evidence that h — R, (t; h) is a convex
function which converges to zero as N and A become larger.

Table S.1 presents the bias and standard deviation of the estimates of jiy (t) = fin (; hj,) obtained
for functional time series generated according to FTS Model 3. As expected the bias and the variance
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Figure S.3: Boxplots of R = 100 pointwise estimates of H, and Ef, for ¢t € {0.2,0.4,0.7,0.8} and four
pairs (N, ), in FTS Model 1. The dashed lines indicate the true values of H; and L?.
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Figure S.4: Boxplots of R = 400 pointwise estimates of H, and Ef, for t € {0.2,0.4,0.7,0.8} and four
pairs (N, ), in FTS Model 3. The dashed lines indicate the true values of H; and L3.

decreases as N — oo and as A — oo. However, larger ¢ also means larger Var(X;) (see the Figure S.6).
We next study the asymptotic distribution of fi%, (¢). The @ — @ plots Figure S.7 show that, as stated
by Theorem 4, the standard normal distribution is an accurate approximation of the distribution of
VPN (6 hv) [{Su(t) + 20} {An (8 hy) — p(t)}-

We end this section on empirical evidence for the mean function estimation by a comparison with
the procedure of Rubin and Panaretos (2020), procedure refer to as RP20, in the context of the FTS
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Figure S.5: Empirical average of the risk function ]Tlu(t; h) at t € {0.2,0.4,0.7,0.8} over 400 indepen-
dent functional time series generated according to FTS Model 3, with four setups (N, \).

t=0.2 t=04 t=0.7 t=0.8
N A Bias Sd Bias Sd Bias Sd Bias Sd
150 40 -0.0714 0.2815 0.0515  0.3681 -0.0799  0.4209 0.1585  0.4598
1000 40 -0.0401 0.1085 0.0275 0.1354 -0.0580 0.1544 0.1113 0.1706
400 300 -0.0158 0.1758 -0.0216  0.2295 -0.0327  0.2595 -0.0288 0.2852
1000 1000 -0.0016  0.0937 -0.0039 0.1206 -0.0008 0.1340 0.0018 0.1477

Table S.1: Bias and standard deviation (Sd) of the mean function estimates obtained from 400 inde-
pendent functional time series generated according to FTS Model 3.

0.25 0.50 0.75 0.25 0.50 0.75

Figure S.6: Estimates of the variance function of Var(X,). Left: Variance function in FT'S Model 2
process. Right: Variance function in FTS Model 3 process.

Model 3. We present in Figure S.8 the boxplots of the selected bandwidths according to RP20’s global
approach and to our local approach. The selected bandwidths have comparable magnitudes in almost
all setups (N, ). As expected given the increasing shape of the function H, our local bandwidths
are smaller for ¢ in the first half of I and increase when t is closer to 1. Table S.2 presents the ratio
of the Monte-Carlo estimates of the Mean Square Error (MSE) of our mean function estimator and
the RP20 locally linear estimator. Although the ratio is close to 1, our estimator shows slightly better
performance (ratio smaller than 1) in most of the setups (N, \).
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Figure S.7: Normal Q — Q plots of \/Pn(t; hn) (in(t;hy) — u(t)) / gu(t) +3(t) at t = 0.2, with
hy = {h%}"" and gu(t) + 5(t) computed according to (S.25). Results obtained with 400 independent
time series generated according to FTS Model 3.
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Figure S.8: Bandwidths selected by RP20 (left boxplot) and by our local approach for the mean
estimation at ¢ € {0.2,0.4,0.7,0.8}; results from 400 independent series generated according to the
FTS Model 3.

N A t=0.2 t=0.4 t=0.7 t=0.8
150 40 0.9601 0.9786 0.9971 1.0309
1000 40 1.0036 0.9838 1.0103 1.1388
400 300 0.9762 0.9993 0.9884 0.9913
1000 1000 0.9689 1.0017 0.9840 0.9886

Table S.2: MSE ratio for our mean estimator and RP20; results from 400 independent series generated
in FTS Model 3.
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S.4.5 Additional results on autocovariance function estimation

Similar to the mean function, our adaptive ‘smooth first, then estimate’ estimator of the autocovariance
function is built with the bandwidth A} defined as in (24), obtained by minimizing the estimated bound

3§ﬂ, (s,t; h) of the pointwise quadratic risk. Again, instead of the dependence coeflicient D(s, ¢; k), we
simply consider

N—¢

D(S t h m {Xn n—i—é(t) 7/9\5(5315)}2
N—{— lni 2 —t—k— ~ ~
DI z R T =005 H{ T ) o) ~ (s},
k=1 n=1

where gy(s,t) is an estimator of v,(s, ),

N—
Ge(s,t Z ) Xnpe(t), £>1,

with {X,} the presmoothed curves as defined in (9). Figure S.9 presents the average of the risk
function ﬁq, (s,t; h) over 400 independent functional time series generated according to FTS Model 2
with ¢ = 0, with four setups (V,A). The plots provide evidence that h — R, (s,t;h) is a convex
function which converges to zero as N and A become larger.

80 | (5,1)=(0.2,0.4) 80 | (s,)=(0.8,0.2)

30 (5.1)=(0.4,0.7) 30 1)

(0.7,0.8)

20

(N,A) — (1000,40) - - (150,40)

Figure S.9: Empirical average of the risk function ﬁv(h,ﬁs,fiﬁt,ff) of the lag-1 cross-product
function v1(s,t) at (s,t) € {(0.2,0.4),(0.8,0.2)(0.4,0.7), (0.7,0.8)} over 400 independent functional
time series generated according to FTS Model 2 with g = 0, with four setups (NN, \).
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