Learning the Smoothness of Weakly Dependent Functional Times Series

Motivation

We aim to study stationary functional time series (FTS) where the trajectory are measured with error at discretely, randomly sampled, domain points. Our goal is to estimate the local regularity parameters of the trajectories for FTS in the context of weak dependency, and to derive non-asymptotic bounds for the concentration of these estimators. Indeed, a majority of inference problems in FDA depends on the local regularity.

Weak dependency

Let $\boldsymbol{X} = (X_n)_{n \in \mathbb{Z}}$ be a stationary FTS, with continuous paths, defined on the interval I = [0, 1]: $\succ (\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$: space of square integrable functions; $\succ (\mathcal{C}, \|\cdot\|_{\infty})$: space of continuous functions on *I*. The space $\mathbb{L}^p_{\mathcal{C}}$ is the space of \mathcal{C} -valued random element X such that

$$\nu_p(X) = (\mathbb{E}[\|X\|_{\infty}^p])^{1/p} < \infty.$$

The process $\{X_n\}_n$ is $\mathbb{L}^p_{\mathcal{C}}$ – **m-approximable** if each $X_n \in \mathbb{L}^p_{\mathcal{C}}$ admits the MA representation:

$$X_n = f(\varepsilon_n, \varepsilon_{n-1}, \ldots),$$

where $\{\varepsilon_n\}$ are i.i.d. elements in a measurable space S, and $f: S^{\infty} \to \mathcal{H}$ is measurable. Moreover, we assume that if, for every $n \in \mathbb{Z}$, $\{\varepsilon_k^{(n)}\}_k$ is an independent copy of $\{\varepsilon_n\}_n$ defined on the same probability space, then letting

 $X_n^{(m)} = f(\varepsilon_n, \varepsilon_{n-1}, \dots, \varepsilon_{n-m-1}, \varepsilon_{n-m}^{(n)}, \varepsilon_{n-m-1}^{(n)}, \dots),$ we have

$$\sum_{m\geq 1}\nu_p\left(X_m-X_m^{(m)}\right)<\infty.$$

Example. FAR(1) is $\mathbb{L}^p_{\mathcal{C}} - m$ -approximable: $X_n(t) = \int_0^1 \beta(t, s) X_{n-1}(s) ds + \varepsilon_n(t)$ $\{\varepsilon_n\}_{n\in\mathbb{Z}}$ are *i.i.d.* fBm with Hurst exponent H_{ε} . Hassan Maissoro^{1,*}, Valentin Patilea², Myriam Vimond³

CREST, Datastorm & ENSAI; hassan.maissoro@datastorm.fr, * Presenting author ² CREST, ENSAI; valentin.patilea@ensai.fr ³ CREST, ENSAI; myriam.vimond@ensai.fr

The local regularity parameters

We introduce for any u, v close to t, The process X, with non differentiable paths, admits a *local regularity* at $t \in I$, with ► local exponent $H_t \in (0, 1)$, Let $t_1 = t - \Delta/2$, $t_3 = t + \Delta/2$. The estimator of ▶ and local **Hölder constant** $L_t > 0$, if H_t is $\mathbb{E}\left[(X(u) - X(v))^2 \right] \approx L_t^2 |u - v|^{2H_t},$ for all $u, v \in [t - \Delta/2, t + \Delta/2]$ for some $\Delta > 0$. A plug-in estimator for L^2_{\star} is

Concentration bounds

Let $\{X_n\}$ be $\mathbb{L}^4_{\mathcal{C}} - m$ -approximable. Assume that the \mathbb{L}^2 -risk of smoothing is suitably bounded. Then, for any $\mu \ge \mu_0$, for some μ_0 , and for $\Delta > 0$ and $\varphi > 0$ depending on μ , we have $\mathbb{P}\left(|\widehat{H}_t - H_t| > \varphi\right) \le \frac{4\mathfrak{f}_1}{N\varphi^2 \Delta^{4H_t}} + 4\mathfrak{b}\exp\left(-\mathfrak{f}_2 N\varphi^2 \Delta^{4H_t}\right),$ $\mathbb{P}\left(\left|\widehat{L_t^2} - L_t^2\right| > \varphi\right) \le \frac{5\mathfrak{l}_1}{N\varphi^2 \Delta^{4H_t + 4\varphi}} + 5\mathfrak{b}\exp\left(-\mathfrak{l}_2 N\varphi^2 \Delta^{4H_t + 4\varphi}\right),$ where $\mathfrak{b} > 0$ is a constant and $\mathfrak{f}_1, \mathfrak{f}_2, \mathfrak{l}_1, \mathfrak{l}_2 > 0$ are also constants depending on the dependence measure.

Data observation Framework

For $n = 1 \dots N$, the trajectory X_n is measured with error at discretely, randomly sampled, domain points:

$$Y_{n,k} = X_n(T_{n,k}) + \varepsilon_{n,k}, \quad 1 \le k \le M_n,$$

where

 $\succ M_1, \ldots, M_N \stackrel{i.i.d.}{\sim} M$ with expectation μ , \succ the observation times $T_{n,k} \sim T$ are independent, $\succ \varepsilon_{n,k} \sim \epsilon$ are independent centered errors, > X, M, ϵ , and T are mutually independent.

For recovering the trajectories, we use the nonparametric estimation to construct an estimator X_n for each X_n , using its sampled points $(Y_{n,k}, T_{n,k})_k$.

The local regularity estimators

$$\widehat{\theta}(u,v) = \frac{1}{N} \sum_{n=1}^{N} \left\{ \widetilde{X}_n(v) - \widetilde{X}_n(u) \right\}^2$$

$$\widehat{H}_t = \frac{\log(\widehat{\theta}(t_1, t_3)) - \log(\widehat{\theta}(t_1, t))}{2\log(2)}$$

$$\widehat{L}_t^2 = \frac{\widehat{\theta}(t_1, t_3)}{\Delta^{2\widehat{H}_t}}.$$

Simulation

We simulate a FAR(1) where $\{\varepsilon_n\}$ are i.i.d. 'tieddown' multifractional Brownian motion (see [1]) paths with :

 \blacktriangleright a logistic H_t function and $L_t^2 = 4$, > and a kernel $\beta(s,t) = \alpha st$, with $\alpha = 9/4$.

Figure: Time series of N = 250 observations of a simulated FAR(1) without error. The last ten functions are shown in the bottom graph.

[1]	Stilia How
	Stoc
	116(

- [2] Siegfried Hörmann and Piotr Kokoszka. Weakly dependent functional data. The Annals of Statistics, 38(3):1845–1884, 2010.
- Patilea.
- [4] Weidong Liu, Han Xiao, and Wei Biao Wu. Probabilities and moment inequalities under dependence. Statistica Sinica, 23:1257–1272, 2013.

Estimation results

Perspectives

- Build adaptive estimation of :
- > mean and covariance functions,
- > auto-covariance function,
- > dynamic functional principal component,
- \blacktriangleright depth functions, etc.

References

- ian A. Stoev and Murad S. Taqqu. rich is the class of multifractional brownian motions? chastic Processes and their Applications, (2):200-221, 2006.
- [3] Steven Golovkine, Nicolas Klutchnikoff, and Valentin
- Learning the smoothness of noisy curves with application to online curve estimation.
- Electronic Journal of Statistics, 16(1):1485–1560, 2022.