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Motivation

We aim to study stationary functional time series
(FTS) where the trajectory are measured with
error at discretely, randomly sampled, domain
points. Our goal is to estimate the local regu-
larity parameters of the trajectories for FTS in
the context of weak dependency, and to derive
non-asymptotic bounds for the concentration of
these estimators. Indeed, a majority of inference
problems in FDA depends on the local regularity.

Weak dependency

Let X = (Xn)n∈Z be a stationary FTS, with con-
tinuous paths, defined on the interval I = [0, 1] :

➤ (H, ⟨·, ·⟩H) : space of square integrable functions ;
➤ (C, ∥ · ∥∞) : space of continuous functions on I .
The space Lp

C is the space of C−valued random ele-
ment X such that

νp(X) = (E [∥X∥p
∞])1/p < ∞.

The process {Xn}n is Lp
C − m-approximable if

each Xn ∈ Lp
C admits the MA representation:

Xn = f (εn, εn−1, . . .),
where {εn} are i.i.d. elements in a measurable space
S, and f : S∞ → H is measurable. Moreover, we
assume that if, for every n ∈ Z, {ε

(n)
k }k is an inde-

pendent copy of {εn}n defined on the same proba-
bility space, then letting
X (m)

n = f (εn, εn−1, . . . , εn−m−1, ε
(n)
n−m, ε

(n)
n−(m−1) . . .),

we have ∑
m≥1

νp

(
Xm − X (m)

m

)
< ∞.

Example. FAR(1) is Lp
C − m-approximable:

Xn(t) =
∫ 1

0
β(t, s)Xn−1(s)ds + εn(t)

{εn}n∈Z are i.i.d. fBm with Hurst exponent Hε.

The local regularity parameters

The process X , with non differentiable paths, admits
a local regularity at t ∈ I , with

➤ local exponent Ht ∈ (0, 1),
➤ and local Hölder constant Lt > 0, if

E
[
(X(u) − X(v))2] ≈ L2

t |u − v|2Ht,

for all u, v ∈ [t − ∆/2, t + ∆/2] for some ∆ > 0.

The local regularity estimators

We introduce for any u, v close to t,

θ̂(u, v) = 1
N

N∑
n=1

{
X̃n(v) − X̃n(u)

}2

Let t1 = t − ∆/2, t3 = t + ∆/2. The estimator of
Ht is

Ĥt = log(θ̂(t1, t3)) − log(θ̂(t1, t))
2 log(2)

A plug-in estimator for L2
t is

L̂2
t = θ̂ (t1, t3)

∆2Ĥt
.

Concentration bounds

Let {Xn} be L4
C − m-approximable. Assume that the L2-risk of smoothing is suitably bounded. Then, for

any µ ≥ µ0, for some µ0, and for ∆ > 0 and φ > 0 depending on µ, we have

P
(
|Ĥt − Ht| > φ

)
≤ 4f1

Nφ2∆4Ht
+ 4b exp

(
−f2Nφ2∆4Ht

)
,

P
(∣∣∣∣L̂2

t − L2
t

∣∣∣∣ > φ
)

≤ 5l1
Nφ2∆4Ht+4φ

+ 5b exp
(
−l2Nφ2∆4Ht+4φ

)
,

where b > 0 is a constant and f1, f2, l1, l2 > 0 are also constants depending on the dependence measure.

Data observation Framework

For n = 1 . . . N, the trajectory Xn is measured
with error at discretely, randomly sampled, domain
points:

Yn,k = Xn(Tn,k) + εn,k, 1 ≤ k ≤ Mn,

where
➤ M1, . . . , MN

i.i.d.∼ M with expectation µ,
➤ the observation times Tn,k ∼ T are independent,
➤ εn,k ∼ ϵ are independent centered errors,
➤ X, M , ϵ, and T are mutually independent.

For recovering the trajectories, we use the nonpara-
metric estimation to construct an estimator X̃n for
each Xn, using its sampled points (Yn,k, Tn,k)k.

Simulation

We simulate a FAR(1) where {εn} are i.i.d. ‘tied-
down’ multifractional Brownian motion (see [1])
paths with :

➤ a logistic Ht function and L2
t = 4,

➤ and a kernel β(s, t) = αst, with α = 9/4.

Figure: Time series of N = 250 observations of a simulated
FAR(1) without error. The last ten functions are shown in the
bottom graph.

Estimation results

Estimation of Ht and L2
t at t = 1/2 using the pre-

vious FAR(1) and taking ϵ ∼ N (0, 1).

Figure: Estimates of Ĥt. The line is the true Ht = 0.6.

Figure: Estimates of L̂2
t . The line is the true L2

t = 4.

Perspectives

Build adaptive estimation of :
➤ mean and covariance functions,
➤ auto-covariance function,
➤ dynamic functional principal component,
➤ depth functions, etc.
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