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Introduction (1/3)
Example of a connection point for the extraction and injection of electricity

▶ A set of N time-dependent curves, Xn : [0, 1] → R, n = 1 . . .N.
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▶ The trajectories are irregular.
▶ We observe each curve every 10 mins + measurement errors.
▶ Regularity and final goal should be considered in reconstruction.
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Introduction (2/3)
Observation scheme

For n = 1, . . . ,N, Xn is measured with error at discrete, randomly sampled
points :

Yn,k = Xn(Tn,k) + εn,k , 1 ≤ k ≤ Mn,

▶ {Xn} is a stationary process of H = L2[0, 1],

▶ M1, . . . ,MN
i.i.d.∼ M with expectation λ,

▶ the observation times Tn,k ∼ T are i.i.d.,

▶ εn,k ∼ ϵ are independent centered errors,

▶ {Xn}, {Mn}, {εn,k}, and {Tn,k} are mutually independent.
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Introduction (3/3)
Motivation

We aim to estimate the local regularity parameters of the trajectories for FTS in
the context of weak dependency.

Using dependent curves measured with noise at random discrete points, our goal is to
perform adaptive estimation of :
▶ mean and autocovariance kernel functions,
▶ depth functions, etc.

▶ The concept of local regularity was considered by Golovkine et al.,
(2022) for i.i.d. functional data.

▶ For FTS, mean and autocovariance estimators have already been considered
by Rubìn and Panaretos (2020) under the hypothesis that these
functions admit at least one derivative.

▶ We extend the results of Golovkine et al., (2022) to FTS to perform
estimates that adapt to the local regularity.
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Local regularity parameters (1/5)
Definition and estimation

Definition. The process X admits a local regularity at t ∈ I, with local exponent
Ht ∈ (0, 1) and Hölder constant Lt > 0, if

E
[
(X(u) − X(v))2] ≈ L2

t |u − v |2Ht ,

for all u, v satisfying t − ∆/2 ≤ u ≤ t ≤ v ≤ t + ∆/2 for some ∆ > 0.

Estimation. We use some nonparametric estimates X̃n to recover the Xn’s. For any u, v
close to t, let

θ̂(u, v) = 1
N

N∑
n=1

{
X̃n(v) − X̃n(u)

}2
.

Our estimators of Ht and L2
t are defined as empirical counterparts of their respective

definition. Let t1 = t − ∆/2, t3 = t + ∆/2. The estimators of Ht and L2
t are

Ĥt = log(θ̂(t1, t3)) − log(θ̂(t1, t))
2 log(2) and L̂2

t = θ̂ (t1, t3)
∆2Ĥt

.
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Local regularity parameters (2/5)
Weak dependency assumption

Let {Xn}n∈Z be a stationary FTS, with continuous paths, on I = [0, 1] :
▶ (H, ⟨·, ·⟩H) : space of square integrable functions ;
▶ (C, ∥ · ∥∞) : space of continuous functions on I.

The space Lp
C is the space of C−valued random element X such that

νp(∥X∥p
∞) = (E [∥X∥p

∞])1/p
< ∞.

Weak dependency assumption : {Xn}n is Lp
C − m-approximable.

▶ Lp − m-approximation for H−valued functional data was introduced by
Hörmann and Kokoszka (2010).

▶ We need a dependency type of {Xn} that can be inherited by {Xn(t)}
because we are studying {Xn} locally at t ∈ I and such we use ∥ · ∥∞

instead of ∥ · ∥H.

Example. FAR(1) is Lp
C − m-approximable.
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Local regularity parameters (3/5)
Concentration bounds
▶ Let {Xn} be L4

C − m-approximable.
▶ Assume that the L2-risk of smoothing is suitably bounded.

Then, for some φ,ψ ∈ (0, 1) such that

6L2
t ∆−2φφ|log∆| < ψ,

and for λ large enough, we have :

P
(

|Ĥt − Ht | > φ
)

≤ f1
Nφ2∆4Ht

+ 4b exp
(
−f2Nφ2∆4Ht

)
,

P
(∣∣∣L̂2

t − L2
t

∣∣∣ > ψ
)

≤ g1
Nψ2∆4Ht +4φ

+ f1
Nφ2∆4Ht

+ 4b exp
(
−f2Nφ2∆4Ht

)
+ 2b exp

(
−g2Nψ2∆4Ht +4φ

)
.

where b > 0 is a constant and f1, f2, g1, g2 > 0 are also constants depending on
the dependence measure.
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Local regularity parameters (4/5)
Application : sample paths of a FAR(1)

We simulate a FAR(1) where {ξn} are i.i.d. ‘tied-down’ multifractional Brownian
motion (see Stoev and Taqqu (2006)) paths with :
▶ a logistic Ht function and L2

t = 4,
▶ and a kernel β(s, t) = αst, with α = 9/4.

Figure – Time series of N = 250 observations of a simulated FAR(1) without error. The
last ten functions are shown in the bottom graph.
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Local regularity parameters (5/5)
Application : estimation of local regularity parameters

Estimation of Ht and L2
t at t = 1/2 using the previous FAR(1) and taking

ϵ ∼ N (0, σ2 = 0.04).

▶ Obtained reasonably good results :

Figure – Estimates of Ĥt . The line is the
true Ht = 0.6.

Figure – Estimates of L̂2
t . The line is the

true L2
t = 4.
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Adaptive mean function estimation
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Adaptive mean function estimation
Let µ(t) = E(Xn(t)) be the mean function of the stationary process {Xn}.

▶ A naive estimator of µ(t) : µ̂N(t, h) = N−1(X̂1(t, h) + · · · + X̂N(t, h)),
where X̂n(t, h) is a nonparametric estimator of Xn, and h a bandwidth.

▶ The objective : estimation of µ(t) by selection of h according to the local
regularity of {Xn} at time t and selection of the relevant curves of the sample.

▶ The proposed estimator is µ̂P(t; h∗
µ), with

µ̂P(t; h) = PN(t; h)−1
(
π1(t; h)X̂1(t; h) + · · · + πN(t; h)X̂N(t; h)

)−1

πn(t; h) =
{

1 if
∑Mn

k=1 1{|Tn,k − t| ≤ h} ≥ 1
0 otherwise , PN(t; h) =

N∑
n=1

πn(t; h).

▶ h∗
µ minimises a sharp upper bound of the quadratic risk of µ(t).

Adaptive autocovariance kernel estimation (work in progress).
▶ The objective : The same methodology is under development for the

autocovariance kernel for lag-ℓ, ℓ > 0.
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Take home message

1 Estimation of local regularity for FTS.
Local regularity parameters are : exponent Ht and Hölder constant L2

t .
Exponential bound for the concentration of the estimators of Ht and L2

t under
L4

C − m-approximation.
The simulations show that Ĥt and L̂2

t give satisfactory results.

2 Adaptive estimation of the mean and autocovariance kernel functions.
Optimal smoothing parameter used to reconstruct curves depends on the final
goal.
Simulations show satisfactory results for the mean function.

▶ Perspectives :
Adaptive estimators for anomaly detection,
Robust prediction model, etc.
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Thanks for your attention !
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