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Résumé. Nous considérons des séries temporelles fonctionnelles stationnaires où chaque
observation est une trajectoire, mesurée avec erreur à des instants discrets, éventuellement
aléatoires, du domaine d’observation. Nous considérons l’estimateur des paramètres de
régularité locale des trajectoires introduit par Golovkine et al. (2022) sous l’hypothèse de
faible dépendance, la Lp −m−approximabilité. Dans ce contexte, des bornes de concentra-
tion non-asymptotiques de l’estimateur de la régularité locale sont établies. Par la suite cette
procédure permettra de diagnostiquer les changement de régularité le long de la trajectoire,
construire une estimation optimale de la fonction d’autocovariance, etc. Au travers d’une
étude de simulation, nous illustrons les bonnes capacités de la méthode proposée, ce qui
nous permet d’esquisser quelques conseils pratiques sur la façon de sélectionner les hyper-
paramètres de la procédure.

Mots-clés. Bornes de concentration, Lissage à noyau, Inégalité de Nagaev, Processus
stochastique.

Abstract. We consider functional time series where the sample paths are observed with
error at possibly random discrete in the domain. We reconsider the local regularity estimator
proposed by Golovkine et al. (2022) in the context of weakly dependent curves, under the
assumption of Lp −m−approximability. In this new framework, we derive non asymptotic
exponential bounds for the concentration of the regularity estimators. This will further
allow to diagnose a change of regularity along the sample paths, to build optimal estimator
of mean and (auto)covariance functions, etc. An extensive simulation study illustrate the
good performance of our estimators with finite time series. The simulation experiments also
provide guidance for the choice of the hyperparameters involved in our estimation method.

Keywords. Concentration bounds, Kernel smoothing, Nagaev inequality, Stochastic
processes.

1 Introduction

In functional data analysis (FDA), the unit of observation is an entire curve (also called
trajectory or sample path), or a vector of curves. Thus, under reasonable assumptions, it is
possible to learn the distribution of the underlying stochastic process, even if the number of
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measurements on each trajectory remains small (see Yao et al., 2005). However, the obser-
vations are in general noisy measurements of the curves, at discrete points in their domain,
not necessarily regular or not necessarily the same from one curve to another. It is therefore
necessary to reconstruct the trajectories, for instance using a nonparametric smoother. This
is a very important step in FDA. With the reconstructed trajectories, quantities of interest,
such as for instance the mean function and the covariance functions, can be easily estimated.

The quality of the estimates of these objects depends strongly on the nonparametric
smoothing, and thus on the optimal choice of the smoothing bandwidth, which itself depends
on the regularity of the underlying process that generated the trajectories. Golovkine et al.
(2022) have introduced a method for estimating the local regularity parameters of the under-
lying process when the trajectories are independent and identically distributed. Next, they
derive adaptive optimal estimates of irregular mean and covariance function (see Golovkine
et al., 2021).

In the context of functional time series (FTS), estimators of the mean and autocovariance
functions have been already proposed by Rub́ın and Panaretos (2020) under the assumption
that these functions admit at least one derivative. However, in some cases, for example in
the energy domain, the mean and autocovariance functions can be very irregular, of unknown
irregularity. Several phenomena are naturally described by this type of data. This is the case
for photovoltaic electricity production, which depends on the clouds. Thus, if the production
of a photovoltaic park is observed for a sufficiently long period of time, it naturally generates
data under the form of a set of irregular daily curves that are dependent on each other. In
this work, we extend the results of Golovkine et al. (2022) to FTS in order to estimate the
regularity of an underlying process which generated a set of dependent random curves. A
final goal will be to have optimal estimates of objects such as the autocovariance function or
the parameters of a functional autoregressive model when the trajectories are irregular.

Section 2 describes the statistical model associated with the observation of the FTS at
discrete points in the domain, in the presence of additive noise. Section 3 and Section 4
describe respectively the local regularity assumption and the weak dependence assumption
considered here. Section 5 presents the estimators and their concentration bounds.

2 The functional time series model

Functional time series consist of a collection of random functions observed over time, for
which there is a temporal dependence. Let I = [0, 1] be the domain where the functions are
defined. The functional time series is then denoted {Xn} = {Xn(u), u ∈ I}n∈Z. We assume
that for each n ∈ Z, Xn is a random element of the Hilbert space H = L2(I) of square
integrable functions equipped with the inner product ⟨·, ·⟩H (and ∥ · ∥H is the associated
norm). Moreover we assume that the paths of Xn are almost surely continuous functions,
i.e., Xn belongs to the Banach space C = C(I) of continuous functions equipped with the
sup-norm ∥ · ∥∞. We will see in Section 4 why we need Xn to belong to C. For p ≥ 1, we

denote by Lp the space of real valued random variable Z such that νp(Z) = (E [|Z|p])1/p <∞.
The spaces LpH (resp. LpC) denote the space of H-valued (resp. C-valued) random function X
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such that νp (∥X∥H) <∞ (resp. νp (∥X∥∞) <∞ ).

Observation scheme. For each 1 ≤ n ≤ N , we observe the trajectory of Xn at Mn points
{Tn,i, 1 ≤ i ≤ Mn} of the interval I in the presence of an additive noise. The observations
associated with a curve, or trajectory, Xn consist of the pairs (Yn,i, Tn,i) ∈ R× I where Yn,i
is defined as

Yn,i = Xn(Tn,i) + ϵn,i, 1 ≤ n ≤ N, 1 ≤ i ≤Mn. (1)

We assume that:

(H1) {Xn} is a stationary process of L2
H ;

(H2) the number of observation points in the domain for each curve, denoted M1, . . . ,MN ,
are independent copies of an integer-valued random variable M , with expectation µ ;

(H3) the observation points {Tn,i}n,i are independent copies of a random variable T taking
values in I ;

(H4) the additive noises {ϵn,i}n,i are independent copies of a centered error variable ε with
a finite variance ;

(H5) the sequences {Xn}n, {Mn}n, {Tn,i}n,i and {ϵn,i}n,i are mutually independent.

In some applications, Assumption (H4) of homoscedasticity could be unrealistic. Nevertheless
this assumption is convenient in order that {Xn} transmits its stationarity (Assumption (H1))

to the pre-smoothing process {X̃n}, see (5).

3 The local regularity parameters

We are interested in studying the local regularity at t ∈ (0, 1) of the stationary distribution
of {Xn} as it is introduced by Golovkine et al. (2022). First, to simplify the presentation,
we assume that the process is not differentiable almost surely in a neighborhood J of t such
that the process is locally Hölder in quadratic mean :

E
[
(X(u)−X(v))2

]
≈ L2

t |u− v|2H0 , u, v ∈ J. (2)

Here ≈ means the left-hand side is equal to the right-hand side times a quantity which tends
to 1 when |u − v| → 0. More precisely, for some H0 ∈ (0, 1) and for an open sub-interval J
of I such that t ∈ J , we assume that

(H6) the stationary distribution of {Xn} belongs to the class X (H0, J) describing the set of
stochastic processes X = {X(t), t ∈ I} verifying the following assertions,

(a)
0 < a0 = inf

u∈J
E
[
X(u)2

]
≤ sup

u∈J
E
[
X(u)2

]
= a0 <∞.
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(b) for all t ∈ J, there exist ∆ ∈ (0, 1] with [t − ∆/2, t + ∆/2] ⊂ J such that for all
u, v satisfying t−∆/2 ≤ u ≤ t ≤ v ≤ t+∆/2, we have∣∣θ(u, v)− L2

t |u− v|2H0
∣∣ ≤ S2

t |u− v|2H0∆2β0 ,

where θ(u, v) = E
[
(X(u)−X(v))2

]
, β0 > 0 is a fixed positive constant, and

Lt > 0, St ≥ 0 are constants which could vary with t.

If the process {Xn} is δ times differentiable, then conditions (a) and (b) of (H6) are considered
for the δ−th order derivative of the sample path. Here we focus on the non-differentiable
case and we aim to estimate the local regularity parameter H0 and the Hölder constant L2

t

at t ∈ J .

Example 1 (Locally Hölder regularity in quadratic mean of a FAR(1) process). Let {Xn}n∈Z
be a mean zero process following a FAR(1),

Xn(t) = Ψ(Xn−1)(t) + ξn(t), t ∈ I, n ∈ Z, (3)

where {ξn}n∈Z are i.i.d. fractional Brownian motion (fBm) of Hurst exponent Hξ ∈ (0, 1)
with

E
[
(ξn(u)− ξn(v))

2] = L2
Hξ
|u− v|2Hξ .

The autoregressive operator Ψ is assumed to be an integral operator defined by,

Ψ(x)(t) =

∫
I

ψ(s, t)x(s)ds, x ∈ C.

A sufficient condition of the existence of a stationary solution for (3), under the form (4)
below, is

∫
I

∫
I
ψ2(s, t)dsdt < 1, see for instance Kokoszka and Reimherr (2017, Section 8.8).

Assume further that the kernel of the operator is such that,

|ψ(s, u)− ψ(s, v)|2 ≤ C|u− v|2Hψ , for every s and |u− v| < ∆ ≤ 1,

where Hψ ∈ (0, 1) is greater than Hε, and C is a positive constant not depending on s. Then,
FAR(1) process belongs to the class X (Hξ, J).

4 Weak Dependency

Since we are studying the process {Xn} locally at t ∈ J , we need to consider a dependence
type of {Xn} that can be inherited by {Xn(t)}. Our choice is to borrow the concept of
LpH − m−approximability introduced by Hörmann and Kokoszka (2010) in context of H-
valued random elements. The general idea is to approximate {Xn}n∈Z by a m-dependent

process {X(m)
n }n∈Z such that, for every n ∈ Z, the sequence {X(m)

n }m≥1 converges in some
sens to Xn as m→ ∞. If the convergence is fast enough, then the limiting behaviour of the
original process may be similar to the m-dependence sequences. Here, in order to get the
Lp−m-approximability for the sequences {Xn(t)}n∈Z for all t ∈ I, instead of considering the
norm of H to define this convergence, we use the norm ∥ · ∥∞ of C :
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(H7) the stationary process {X} is LpC −m− approximable with p ≥ 4,

(a) The paths of {Xn} are almost surely continuous such that {Xn} ⊂ LpC.
(b) The process {Xn} admits a moving average representation,

Xn = f(ξn, ξn−1, . . .) (4)

where the {ξn} are i.i.d. elements in a measurable space S, and f : S∞ → H is
measurable.

(c) For every n ∈ Z, let {ξ(n)k }k be an independent copy of {ξn}n defined on the same
probability space. The coupled version of Xn is defined by

X(m)
n = f(ξn, ξn−1, . . . , ξn−m+1, ξ

(n)
n−m, ξ

(n)
n−m−1, . . .),

(d) The sequence {X(m)
n }m≥1 converges to Xn as m→ ∞ in the following way∑

m≥1

νp
(∥∥Xm −X(m)

m

∥∥
∞

)
<∞.

Notice that LpC − m-approximability implies LpH − m-approximability since the ∥ · ∥H
norm is bounded by the infinity norm. Moreover the basic algebra properties of LpH − m-
approximability established by Hörmann and Kokoszka (2010, Lemma 2.1) hold true with
this definition, and the LpC −m-approximability of {Xn} entails the Lp −m-approximability
of {Xn(t)}n∈Z for all t ∈ I. The FAR(1) defined in Exemple 1 is LpC −m-approximable.

5 Estimation of the local regularity parameters

First we consider the case where the process is not differentiable almost surely in t ∈ (0, 1).
Let t1, t2 and t3 be in [t−∆/2, t+∆/2] ⊂ J such that t3 − t1 = ∆ and t2 = t is the middle
point of [t1, t3]. Using the definition of local regularity (Assumption (H6)), the following
proxy values of H0 and L2

t are considered,

H̃0(∆) =
log(θ(t1, t3))− log(θ(t1, t2))

2 log(2)
and L̃2

t (∆) =
θ (t1, t3)

∆2H0
.

It can be shown that H̃0(∆) and L̃2
t (∆) converge respectively to H0 and L2

t as ∆ goes to 0.

Moreover we remark that L̃2
t (∆) = L2

t and H̃0(∆) = H0 if S
2
t = 0. Our estimators of (H0, L

2
t )

is obtained by plugging in a suitable estimator of θ(u, v) for (u, v) ∈ {(t1, t3), (t1, t2)} in the
definition of these proxy values.

Presmoothing step The estimation of θ(u, v) implies the reconstruction of the observed
curves X1, . . . , XN at point u and v since these curves are discretely observed in presence of
an additive noise, see (1). To this aim of recovering the continuity property of trajectories
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and preserving the stationarity, we use the same linear non-parametric procedure for every
Xn using its associated sampled points (Yn,k, Tn,k), 1 ≤ k ≤Mn :

X̃n(u) =
Mn∑
i=1

Wn,i(u)Yn,i, u ∈ J, n = 1 . . . , N, (5)

where the weights {Wn,i}i=1...Mn are function of (Mn, Tn,1, . . . , Tn,Mn) and a suitably selected
smoothing parameter. This pre-smoothing is such that,

(H8) the sum of absolute values of weights are uniformly bounded,

sup
n=1...N

sup
u∈J

Mn∑
i=1

|Wn,i(u)| ≤ 1 almost surely.

(H9) for all curves Xn, the quadratic risk of X̂n is uniformly contrrolled,

R2 = sup
u∈J

E
[
(X̃n(u)−Xn(u))

2
]
≤ Bµ−τ ,

where B > 0 and τ > 0 are fixed constants.

Assumption (H8) is satisfied by the Nadaraya-Watson procedure, while Assumption (H9)
is true under some smoothness assumptions on the density of T and the functions {Xn}.

Local regularity estimators Given a nonparametric estimator X̃n of Xn, for t ∈ J , this
suggests to define a natural estimator of θ(u, v) as,

θ̂(u, v) =
1

N

N∑
n=1

(
X̃n(v)− X̃n(u)

)2

, u, v ∈ J.

Then our estimators of H0 and L2
t are defined as,

Ĥ0 =
log(θ̂(t1, t3))− log(θ̂0(t1, t2))

2 log(2)
and L̂2

t =
θ̂ (t1, t3)

∆2Ĥ0

.

Theorem 1. Assume the assumptions (H1) — (H9) hold such that

ν4(Xm −X(m)
m ) = O(1/mα), α > 3/2,

∆2β0S2
t <

L2
t log(2)

4
φ,

µ−τ/2 < CL2
tφ∆

2H0 ,

for some φ ∈ (0, 1) and for some positive constant C depending on B, a0 and τ. Then for
any enough large µ, we have

P
(
|Ĥ0 −H0| > φ

)
≤ f1
Nφ2∆4H0

+ 4b exp
(
−f2Nφ

2∆4H0
)
,

where b is a positive constant and f1 and f2 are also positive constants depending on the
dependence measure.
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Theorem 2. Assume the assumptions of Theorem 1 are fullfilled. Moreover we assume,

3∆−2φ∆2β0S2
t < ψ,

6L2
t∆

−2φφ| log∆| < ψ,

µ−τ/2 < C̃∆2φψ∆2H0 ,

for some φ, ψ ∈ (0, 1) and for some positive constant C̃ depending on B, a0 and τ. Then for
any enough large µ, we have

P
(∣∣∣L̂2

t − L2
t

∣∣∣ > ψ
)
≤ g1
Nψ2∆4H0+4φ

+
f1

Nφ2∆4H0

+ 4b exp
(
−f2Nφ

2∆4H0
)
+ 2b exp

(
−g2Nψ

2∆4H0+4φ
)
,

where b is a positive constant and f1, f2, l1 and l2 are also positive constants depending on
the dependence measure.

Following Golovkine et al. (2022) we choose ∆, φ and ψ as function of the mean number
µ of observation points per curve :

∆(µ) = exp (−(log µ)γ) , where γ ∈ (0, 1] is fixed, (6)

φ(µ) = Cφ (log µ)
−2 , (7)

ψ(µ) = Cψ (log µ)
−1 , (8)

where Cφ and Cψ are some positive constants.

6 Illustration and discussion

We simulate a FAR(1) (see (3)) where {ξn} are i.i.d. ‘tied-down’ multifractional Brownian
motion (see Stoev and Taqqu (2006)) paths with a logistic function forHt, a constant function
L2
t , (see Figure 1), and the kernel function ψ(s, t) = (9/4)st. The distribution of the additive

error noise is ε ∼ N (0, 0.04).

Figure 2 illustrates that our estimates concentrate arround the true values as the sample
size N and the mean number µ of observation points per curve increase. The concentration
bounds established in Theorem 1 and Theorem 2 provide guidance for calibrating hyper-
parameters such as ∆, φ and ψ. Equations (6) to (8) propose choices of these quantities
to obtain a concentration of local regularity estimators. For each N , the pre-smoothing
bandwidth of the trajectories has been chosen as the median of the bandwidths obtained by
cross-validation on a sample of 20 curves. To choose the parameter γ of the ∆ expression,
a grid of ∆ values was tested. It appears that ∆ decreases well when µ is large and that a
γ ≈ 1/2 gives satisfying results. However, this choice would depend on the data and further
investigations are necessary, especially as this choice affects the quality of the estimates.

With good estimates of Ht and L2
t , the next step is to determine optimal bandwidths

to estimate the mean and autocovariance functions using the “smooth first, estimate later”
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Figure 1: Overview of simulated data. Top left: the true Ht function. Top right: The true
L2
t function, here L

2
t = 4. Middle: Sample of N = 250 functions from a simulated FAR(1)

without error. Bottom: The last ten functions of the middle graph.

Figure 2: Empirical distribution of the regularity parameters the estimatorsx at t = 1/2
according to the sample size N and the mean number µ of observation times per curve over
50 replications. Left: Boxplots of Ĥt, the true value is Ht = 0.6. Right: Boxplots of L̂2

t ,
the true value is L2

t = 4.
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method or the “two-step procedure”. These approaches have been considered by, among
others, Golovkine et al. (2021), Hall et al. (2006) and Zhang and Chen (2007). The final goal
is to make inferences on electricity production curves of wind or photovoltaic farms which
are very irregular.
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