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Introduction (1/3)
Example of a connection point for the extraction and injection of electricity

▶ A set of N time-dependent curves, Xn : [0, 1] → R, n = 1 . . . N.
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▶ The trajectories are irregular.
▶ We observe each curve every 10 mins + measurement errors.
▶ Regularity and final goal should be considered in reconstruction.
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Introduction (2/3)
Observation scheme

For n = 1, . . . , N, Xn is measured with error at discrete, randomly sampled
points :

Yn,k = Xn(Tn,k) + σ(Tn,k)εn,k , 1 ≤ k ≤ Mn,

▶ {Xn} is a stationary process of H = L2[0, 1],

▶ M1, . . . , MN
i.i.d.∼ M with expectation λ,

▶ the observation times Tn,k ∼ T are i.i.d.,

▶ εn,k ∼ ϵ are independent centered errors,

▶ {Xn}, {Mn}, {εn,k}, and {Tn,k} are mutually independent.
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Introduction (3/3)
Motivation

We aim to build a procedure for curve prediction that adapts to the local regularity
of the trajectories for FTS in the context of weak dependence.

Using dependent curves measured with noise at random discrete points, our goal is to
perform adaptive estimation of :
▶ the best linear unbiased (BLUP) estimator that is a combination of
▶ mean, covariance and autocovariance functions.

▶ For FTS, a functional data recovery have already been considered by
Rubìn and Panaretos (2020) under the hypothesis that these functions
admit at least one derivative.

▶ For irregular curves, Maissoro et al. (2024) proposed new estimators of
the mean and autocovariance functions.
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Adaptive linear predictor (1/4)
Let µ(t) = E(Xn(t)) and Γℓ(s, t) = E {[X0(s)−µ(s)][Xℓ(t)−µ(t)]} , for all s, t ∈ I and ℓ ≥ 0.
Moreover,

Yn = (Yn,1,...,Yn,Mn )⊤ , Yn0,1 = (Y⊤
n0−1,Y⊤

n0
)⊤, Σn = diag (σ2(Tn,1),...,σ2(Tn,Mn )) ,

Mn0,1 = (µ(Tn0−1,1),...,µ(Tn0−1,Mn0−1 ),µ(Tn0,1),...,µ(Tn0,Mn0
))⊤.

Definition. Let t0 ∈ I and n0 ∈ {1, . . . , N} be fixed. Following Robinson (1991), the
BLUP of Xn0 (t0) given Yn0,1 is :

X̂n0 (t0) = µ̂(t0) + B̂⊤
n0,1(Yn0,1 − M̂n0,1),

where Bn0,1 =
(

G(n0−1,n0−1)
0 +Σn0−1 G(n0−1,n0)

1
G(n0,n0−1)

1 G(n0,n0)
0 +Σn0

)−1



Γ1(Tn0−1,1,t0)
...

Γ1(Tn0−1,Mn0−1 ,t0)

Γ0(Tn0,1,t0)
...

Γ0(Tn0,Mn0
,t0)


,

and G (n,n′)
ℓ = (Γℓ(Tn,i , Tn′,j))1≤i≤Mn,1≤j≤Mn′

.

Estimation. Put a hat on to get an estimate...
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Adaptive linear predictor (2/4)
Local Regularity Parameters

Definition. The process X admits a local regularity at t ∈ I, with local exponent
Ht ∈ (0, 1) and Hölder constant Lt > 0, if

E
[
(X(u) − X(v))2] ≈ L2

t |u − v |2Ht ,

for all u, v satisfying t − ∆/2 ≤ u ≤ t ≤ v ≤ t + ∆/2 for some ∆ > 0.

Estimation. We use some nonparametric estimates X̃n to recover the Xn’s. For any u, v
close to t, let

θ̂(u, v) = 1
N

N∑
n=1

{
X̃n(v) − X̃n(u)

}2
.

Our estimators of Ht and L2
t are defined as empirical counterparts of their respective

definition. Let t1 = t − ∆/2, t3 = t + ∆/2. The estimators of Ht and L2
t are

Ĥt = log(θ̂(t1, t3)) − log(θ̂(t1, t))
2 log(2) and L̂2

t = θ̂ (t1, t3)
∆2Ĥt

.

Concentration bounds. Under Lp
C − m-approximability by Maissoro et al. (2024).
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Adaptive linear predictor (3/4)
Adaptive mean autocovariance estimation

Adaptive mean function estimation. Let µ(t) = E(Xn(t)) be the mean function of
the stationary process {Xn}.
▶ A naive estimator of µ(t) : µ̂N(t; h) = N−1(X̂1(t; h) + · · · + X̂N(t; h)),

where X̂n(t; h) is a nonparametric estimator of Xn, and h a bandwidth.
▶ The objective : estimation of µ(t) by selection of h according to the local

regularity of {Xn} at time t and selection of the relevant curves of the sample.
▶ The proposed estimator is µ̂N(t; h∗

µ), with

µ̂N(t; h) =
N∑

n=1

πn(t; h)
PN(t; h) X̂n(t; h) where PN(t; h) =

N∑
n=1

πn(t; h)

πn(t; h) = 1 if there is at least one Tn,i ∈ [t − h, t + h] and 0 otherwise.
▶ h∗

µ minimises a sharp upper bound of the quadratic risk of µ(t).

Adaptive autocovariance function estimation.
▶ The objective : The same methodology is developed for the autocovariance

function for lag-ℓ, ℓ ≥ 0.
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Adaptive linear predictor (4/4)
Adaptive mean function estimation. More precisely, we consider

EM,T
[
(µ̂N(t; h) − µ(t))2] ≤ 2Rµ(t; h), where

Rµ(t; h) = L2
t h2HtB(t; h, 2Ht) + σ2(t)Vµ(t; h) + Dµ(t; h)/PN(t; h),

and define h∗
µ ∈ arg min

h∈HN

R̂µ(t; h) with R̂µ(t; h) = Rµ(t; h, Ĥt , L̂2
t , σ̂2(t)).

Let t ∈ I. Under some assumptions we have

R̂µ(t; h) = OP
{

h2Ht + (Nλh)−1 + N−1} ,

h∗
µ = OP

{
(Nλ)− 1

1+2Ht

}
,

and the estimator µ̂N(t; h∗
µ) satisfies

µ̂∗
N(t) − µ(t) = OP

{
(Nλ)− Ht

1+2Ht + N−1/2
}

.
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Application (1/4)
We simulate a FAR(1) where the WN are i.i.d. multifractional Brownian motion (see
Stoev and Taqqu (2006)) paths with :

▶ a logistic Ht function and L2
t = 1,

▶ a kernel Ψ(s, t) estimated from data from https ://www.renewables.ninja/

Figure – Cov Figure – lag-1 Autoov Figure – Kernel Ψ(s, t)
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Application (2/4)
Generate curves N = 150 and λ = 70
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Applications (3/4)
Adaptive mean function estimation. Estimates of the risk function R̂µ(t; h) at
some locations, for N = 150 and λ = 70.
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Applications (4/4)
Application : Adaptive BLUP estimation.

Estimates for N = 150 and λ = 70 over 400 replicates of the last curve.
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Take home message
Adaptive predictor which combines

1 The best Linear Unbiased Predictor (BLUP) estimator.

2 The estimation of local regularity parameters for FTS.

3 The adaptive optimal estimates of mean, covariance and autocovariance.

Work in progress...
▶ Advanced empirical study on BLUP,

▶ Uniform convergence of the BLUP, etc.

Thanks for your attention !
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